Übungsaufgabe

Arbeitsprinzipien der Mechanik: Gleichgewicht, Schnittgrößen und Reaktionskräfte in Trägern

Universität: Technische Universität Berlin

Kurs/Modul: Baustatik I

Erstellungsdatum: September 6, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Baustatik I

Aufgabe 1: Gleichgewicht, Schnittgrößen und Reaktionskräfte in Trägern

Betrachten Sie einen einfach unterstützten Träger der Länge L mit Auflagern links A und rechts B. Eine vertikale Last P wirkt am Ort x = d von A aus gemessener Länge.

a) Bestimmen Sie die Auflagerkräfte R_A und R_B durch Gleichgewicht der gesamten Stütze.

$$\sum F_y = 0 \implies R_A + R_B = P$$

$$\sum M_A = 0 \implies R_B L - P d = 0$$

b) Formulieren Sie die Schnittegrößen V(x) (Querkraft) und M(x) (Biegemoment) als Funktionen von x für $0 \le x \le L$. Berücksichtigen Sie die Sprungstelle bei x = d.

$$V(x) = \begin{cases} R_A, & 0 \le x < d, \\ R_A - P, & d < x \le L \end{cases}$$

$$M(x) = \begin{cases} R_A x, & 0 \le x \le d, \\ R_A x - P(x - d), & d \le x \le L \end{cases}$$

c) Geben Sie an, an welchem Punkt der Biegelinie das Maximum liegt und wie sich der zugehörige Momentenwert ausdrückt. (Formulieren Sie die Lage und den Wert eindeutig in Abhängigkeit von R_A , P, d und L.)

$$x_M = d, \qquad M_{\text{max}} = M(d) = R_A d$$

d) Untersuchen Sie einen Schnitt direkt am Ort der Last (x = d) und geben Sie die Schnittgrößen links bzw. rechts des Schnitts an.

$$V(d^-) = R_A, \qquad V(d^+) = R_A - P$$

$$M(d) = R_A d$$

Aufgabe 2: Träger unter gleichmäßig verteilter Last (Gitterlast)

Betrachten Sie einen einfach unterstützten Träger der Länge L mit einer gleichmäßig verteilten Last w (N/m) über die gesamte Länge.

a) Bestimmen Sie die Auflagerkräfte durch Gleichgewicht der gesamten Stütze.

$$\sum F_y = 0 \implies R_A + R_B = w L$$

$$\sum M_A = 0 \implies R_B L - w L \cdot \frac{L}{2} = 0$$

b) Formulieren Sie die Schnittegrößen V(x) und M(x) als Funktionen von x (0 bis L).

$$V(x) = R_A - w x$$

$$M(x) = R_A x - \frac{w x^2}{2}$$

c) Bestimmen Sie die Lage x_M des Maximums der Biegelinie und den zugehörigen Wert M_{max} (in Abhängigkeit von R_A , w und L).

$$x_M$$
 im Intervall $[0, L], \quad M_{\text{max}} = M(x_M)$

d) Berechnen Sie die Werte der Schnittgrößen am Schnitt $x = \frac{L}{2}$.

$$V\left(\frac{L}{2}\right), \qquad M\left(\frac{L}{2}\right)$$

Lösungen

Aufgabe 1

Lösungsskizze: Es gilt das Gleichgewicht der ganzen Stütze sowie die Definition von Schnittegrößen. Im Folgenden werden die Stellen a) bis d) der Aufgabenstellung schrittweise gelöst.

a) Auflagerkräfte durch Gleichgewicht der gesamten Stütze

Es gilt das vertikale Gleichgewicht:

$$R_A + R_B = P.$$

Für das Drehmoment um den linken Auflagerpunkt A ergibt sich:

$$\sum M_A = 0 \implies R_B L - P d = 0 \implies R_B = \frac{P d}{L}.$$

Damit folgt:

$$R_A = P - R_B = P - \frac{P d}{L} = P \frac{L - d}{L}.$$

Zwischenbemerkung: Beide Auflagerkräfte hängen linear von der Lage der Last ab.

b) Schnittegrößen V(x) (Querkraft) und M(x) (Biegemoment)

Die Sprungstelle bei x=d führt zu einem Sprung der Querkraft um die Lastgröße P.

$$V(x) = \begin{cases} R_A, & 0 \le x < d, \\ R_A - P, & d < x \le L. \end{cases}$$

Das Biegemoment wird durch Integration der Querkraft erhalten:

$$M(x) = \begin{cases} R_A x, & 0 \le x \le d, \\ R_A x - P(x - d), & d \le x \le L. \end{cases}$$

Hinweis: M(0) = 0 und M(L) = 0 erfüllen die Randbedingungen eines einfach unterstützten Trägers.

c) Lage des Maximums der Biegelinie und zugehöriger Momentenwert

Die Steigungen der Biegelinie ergeben sich aus $\frac{dM}{dx} = V(x)$. Zwischen 0 und d ist $\frac{dM}{dx} = R_A > 0$; zwischen d und L ist

$$\frac{dM}{dr} = R_A - P.$$

Mit der zuvor berechneten Größenrelation

$$R_A - P = P \frac{L - d}{L} - P = -P \frac{d}{L} < 0 \quad \text{(für } d > 0\text{)},$$

ist die Momentenverlauf nach x>d fallend. Daher liegt das maximale Moment bei $x_M=d$.

Das Maximum ergibt sich zu

$$M_{\text{max}} = M(d) = R_A d = \left(P \frac{L - d}{L}\right) d = P \frac{d(L - d)}{L}.$$

Zusätzliche Darstellung: In Abhängigkeit von den Größen $R_A,\ P,\ d$ und L kann man auch schreiben

$$x_M = d,$$
 $M_{\text{max}} = M(d) = R_A d.$

d) Schnitt direkt am Ort der Last x = d

Links vom Schnitt $(x \to d^-)$ gilt

$$V(d^-) = R_A.$$

Rechts vom Schnitt $(x \to d^+)$ gilt

$$V(d^+) = R_A - P.$$

Der Moment am Ort des Schnitts x = d ist

$$M(d) = R_A d.$$

Aufgabe 2

Lösungsskizze: Die Aufgabenstellung behandelt einen einfach unterstützten Träger der Länge L mit einer gleichmäßig verteilten Last w (N/m) über die gesamte Länge. Die Qualität der Lösung folgt dem Prinzip der Gleichgewichts- und Schnittebenen.

a) Auflagerkräfte durch Gleichgewicht der gesamten Stütze

Gesamtlast: wL. Es gilt

$$R_A + R_B = wL.$$

Für das Momentenäquivalent um den linken Auflagerpunkt A:

$$\sum M_A = 0 \implies R_B L - wL \cdot \frac{L}{2} = 0.$$

Daraus folgt

$$R_B = \frac{wL}{2}, \qquad R_A = wL - R_B = \frac{wL}{2}.$$

Bemerkung: Die Auflagerkräfte sind symmetrisch, da die Last symmetrisch ist.

b) Schnittegrößen V(x) und M(x)

Für die Querkraft gilt (Stellenwert am Schnitt x von links):

$$V(x) = R_A - w x.$$

Für das Biegemoment ergibt sich durch Integration der Querkraft:

$$M(x) = R_A x - \frac{w x^2}{2}.$$

Hinweis: Die momentenfreien Randpunkte erfüllen M(0) = M(L) = 0.

c) Lage des Maximums der Biegelinie und zugehöriger Wert

Aus $M'(x) = V(x) = R_A - wx$ folgt das Maximum bei

$$x_M = \frac{R_A}{w}$$
.

Mit $R_A = \frac{wL}{2}$ ergibt sich

$$x_M = \frac{wL/2}{w} = \frac{L}{2}.$$

Der zugehörige Momentenwert ist

$$M_{\text{max}} = M(x_M) = R_A x_M - \frac{w x_M^2}{2} = \frac{wL}{2} \cdot \frac{L}{2} - \frac{w}{2} \left(\frac{L}{2}\right)^2 = \frac{wL^2}{8}.$$

Allgemein: In Abhängigkeit von R_A , w und L gilt

$$x_M = \frac{R_A}{w}, \qquad M_{\text{max}} = \frac{R_A^2}{2w}.$$

Für die gegebene Gleichverteilung (mit symmetrischen Auflagerkräften) folgt daraus $x_M = L/2$ und $M_{\text{max}} = wL^2/8$.

d) Werte der Schnittgrößen am Schnitt x=L/2

Schnittgrößen dort:

$$V\left(\frac{L}{2}\right) = R_A - w\frac{L}{2} = \frac{wL}{2} - \frac{wL}{2} = 0,$$

$$M\left(\frac{L}{2}\right) = R_A \frac{L}{2} - \frac{w}{2}\left(\frac{L}{2}\right)^2 = \frac{wL}{2} \cdot \frac{L}{2} - \frac{w}{2} \cdot \frac{L^2}{4} = \frac{wL^2}{8}.$$

Damit ergeben sich die typischen Maximumwerte für den symmetrischen, durch eine gleichmäßig verteilte Last belasteten Träger.