Übungsaufgabe

Zustandsgrößen, Einflussgrößen und Verformungen in statisch bestimmten Stabtragwerken

Universität: Technische Universität Berlin

Kurs/Modul: Baustatik I

Erstellungsdatum: September 6, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Baustatik I

Aufgabe 1: Zustandsgrößen, Einflussgrößen und Verformungen in statisch bestimmten Stabtragwerken

Betrachten Sie ein einfaches, statisch bestimmtes Dreiecks-Stabtragwerk mit den Knoten A(0,0), B(2,2) und C(4,0). Die Stäbe sind AB, BC und AC. A ist als Festpunkt gegliedert (R_x, R_y) , C als Rollenstütze (R_y) . Es wirkt eine vertikale Last F_y am Knoten B nach unten. Die Stäbe haben gleiche Werkstoff- und Querschnittsparameter (E, A) und tragen nur axiale Kräfte.

a) Zustandsgrößen des Tragwerks

Gegeben: $F_y = 10 \text{ kN (nach unten)}$, $A = 2000 \text{ mm}^2$, E = 210 GPa.

a) Bestimmen Sie die Stabkräfte der Stäbe

$$N_{AB}$$
, N_{BC} , N_{AC}

sowie die Stützreaktionen

$$R_A^x$$
, R_A^y , R_C^y .

Geben Sie die Ergebnisse in Form von Gleichungen und eindeutigen Vorzeichenangaben an. Verwenden Sie die Geometrie A(0,0), B(2,2), C(4,0).

- b) Einflussgrößen: Einflusslinien rund um die Lastlage
- b) Skizzieren Sie die Grundidee der Einflusslinien für die folgenden Reaktionen bzw. Größen, wenn eine vertikale Punktlast f entlang der Grundlinie \overline{AC} verschoben wird:
 - Vertikale Reaktionskraft R_A^y ,
 - Vertikale Reaktionskraft R_C^y
 - Stabkräfte N_{AB} , N_{BC} , N_{AC} .

Beschreiben Sie in Stichpunkten, wie Sie die Einflusslinien durch das Prinzip der virtuellen Weggrößen bzw. durch Superposition erhalten würden (ohne Lösung anzugeben).

- c) Verformung: Verschiebung des Knotens B in y-Richtung
- c) Verwenden Sie das Prinzip der virtuellen Weggrößen, um die vertikale Verschiebung δ_B des Knotens B aufgrund der gegebenen Last F_y zu bestimmen. Formulieren Sie den Berechnungsweg und geben Sie die allgemeine Ausdrucksform an (ohne numerische Lösung zu liefern). Beachten Sie dabei die virtuellen Stabkräfte $N'_{AB}, N'_{BC}, N'_{AC}$ aus dem virtuellen Lastfall (Unitzlasterung in y-Richtung an B).

Aufgabe 2: Einflussgrößen und Verformungen in einem exemplarischen statisch bestimmten Stabtragwerk

Betrachten Sie erneut das Dreiecks-Tragwerk mit der gleichen Geometrie wie in Aufgabe 1, diesmal mit der zusätzlichen Aufgabe, die Verformung unter einer veränderten Lastsituation zu untersuchen.

- a) Einflusslinien für eine veränderte Lastlage
- a) Legen Sie fest, wie sich die Einflusslinien für die vertikale Reaktionskraft R_A^y und R_C^y ändern, wenn die vertikale Last F_y nicht mehr am Knoten B, sondern entlang der Grundlinie \overline{AC} verschoben wird. Beschreiben Sie die Vorgehensweise zur Bestimmung der neuen Einflusslinien.
- b) Virtuelle Weggröße und Definition der Verschiebung
- b) Sei der virtuelle Lastfall definiert durch eine Unit-Last in y Richtung an einem beliebigen Punkt L der Grundlinie \overline{AC} . Bestimmen Sie qualitativ die Form der virtuellen Stabkräfte $N'_{AB}, N'_{BC}, N'_{AC}$ und erläutern Sie, wie diese zur Berechnung der Verschiebung δ_B beitragen. Geben Sie die allgemeine Form der Deflectionsberechnung durch das Prinzip der virtuellen Weggrößen an.
- c) Interpretation
- c) Diskutieren Sie kurze, fachlich prägnant, wie die Form der Einflusslinien und die Geometrie des Tragwerks die Größenordnung der Verschiebung beeinflussen. Welche Rolle spielen Steifigkeit $(E \cdot A)$ und Stablängen (L_i) in der Deflection?

Lösungen

Lösung zu Aufgabe 1

Daten und Vorgaben (Ausgabe der Ergebnisse erfolgt in der Form der Gleichungsnotation mit eindeutigen Vorzeichen)

Stabträger: AB, BC, AC; Knoten A(0,0), B(2,2), C(4,0). A Festpunkt mit (R_x, R_y) ; C Rollenstütze (R_y) . Vertikale Last F_y wirkt am Knoten B nach unten. Stäbe tragen nur axiale Kräfte. Geometrie: A(0,0), B(2,2), C(4,0). Gegebene Größen: $F_y = 10 \text{ kN}$ (nach unten), $A = 2000 \text{ mm}^2$, E = 210 GPa.

a) Stabkräfte N_{AB} , N_{BC} , N_{AC} sowie Stützreaktionen R_A^x , R_A^y , R_C^y

Lösungsweg (methode der Schnittgrößen an den Knoten): - Dreistützige Stabstruktur, statisch bestimmt: m = 3, j = 3 (Beziehung m = 2j - 3). - Definierte Richtung der Stabskräfte: positive Stauchung (Zug) gemäß der Stabrechnung.

Knoten B:

Summe
$$F_x$$
 an B: $-\frac{N_{AB}}{\sqrt{2}} + \frac{N_{BC}}{\sqrt{2}} = 0$ (1)

$$\Rightarrow N_{AB} = N_{BC}. \tag{1}$$

Summe
$$F_y$$
 an B: $-F_y - \frac{N_{AB}}{\sqrt{2}} - \frac{N_{BC}}{\sqrt{2}} = 0$ (2)

$$\Rightarrow N_{AB} + N_{BC} = -F_y \sqrt{2}. \tag{2}$$

Aus (1) und (2):

$$N_{AB} = N_{BC} = -\frac{F_y}{\sqrt{2}}.$$

Knoten C:

Summe
$$F_x$$
 an C: $-N_{AC} - \frac{N_{BC}}{\sqrt{2}} = 0$ (3)

$$\Rightarrow N_{AC} = -\frac{N_{BC}}{\sqrt{2}}. (3)$$

Summe
$$F_y$$
 an C: $R_C^y + \frac{N_{BC}}{\sqrt{2}} = 0$ (4)

$$\Rightarrow R_C^y = -\frac{N_{BC}}{\sqrt{2}}. (4)$$

Knoten A:

Summe
$$F_x$$
 an A: $R_x^A + \frac{N_{AB}}{\sqrt{2}} + N_{AC} = 0$ (5)

$$\Rightarrow R_A^x = -\frac{N_{AB}}{\sqrt{2}} - N_{AC}. \tag{5}$$

Summe
$$F_y$$
 an A: $R_A^y + \frac{N_{AB}}{\sqrt{2}} = 0$ (6)

$$\Rightarrow R_A^y = -\frac{N_{AB}}{\sqrt{2}}. (6)$$

Einsetzen der Werte: Aus (1)–(2) erhält man

$$N_{AB} = N_{BC} = -\frac{F_y}{\sqrt{2}}.$$

Aus (3) folgt

$$N_{AC} = -\frac{N_{BC}}{\sqrt{2}} = \frac{F_y}{2}.$$

Aus (4) und (6) erhält man die Reaktionen:

$$R_A^y = -\frac{N_{AB}}{\sqrt{2}} = \frac{F_y}{2}, \qquad R_C^y = -\frac{N_{BC}}{\sqrt{2}} = \frac{F_y}{2}, \qquad R_A^x = 0 \quad \text{(da N_{AB}, N_{AC} bereits erfüllt sind)}.$$

Numerische Werte ($F_y = 10 \text{ kN}$):

$$N_{AB}=N_{BC}=-\frac{10}{\sqrt{2}}~{\rm kN}\approx -7.071~{\rm kN}~~{\rm (Kompression)},~~N_{AC}=\frac{10}{2}=5.0~{\rm kN}~~{\rm (Spannung)}.$$

$$R_A^x=0,~~R_A^y=\frac{10}{2}=5.0~{\rm kN},~~R_C^y=5.0~{\rm kN}.$$

Zusammenfassung der Ergebnisse (Signifikanz): - Stabkräfte: $N_{AB} = N_{BC} = -7.07$ kN (Kompression), $N_{AC} = 5.0$ kN (Spannung). - Stützreaktionen: $R_A^x = 0$ kN, $R_A^y = 5.0$ kN, $R_C^y = 5.0$ kN. - Die vertikale Last von 10 kN wird somit gleichmäßig in zwei vertikale Anteile von 5 kN an A und C abgeführt, während AB und BC in Kompression beansprucht werden und AC in Spannung steht.

b) Einflussgrößen: Einflusslinien rund um die Lastlage

Hinweis zur Vorgehensweise: - Grundidee: Behandle die Geometrie als statisch bestimmtes Dreiecks-Tragwerk und verschiebe eine vertikale Last f entlang der Grundlinie AC (Längenbezug L = |AC|). - Die Einflusslinien ergeben sich aus dem virtuellen Weg oder Superposition: -Bestimme für die realen Lastpositionen die Reaktionen $R_A^y(f)$ und $R_C^y(f)$ durch Gleichgewichtsbetrachtung (Summe der Vertikallasten und Momentengleichgewicht). - Erzeuge anschliessend für den virtuellen Lastfall (Unitzlasterung in y-Richtung an der jeweiligen Lage) die virtuellen Stabkräfte $N'_{AB}, N'_{BC}, N'_{AC}$. - Die Form der Einflusslinien erhält man durch die Beziehung, dass bei linearer Strukturänderung die Größen linear mit dem Verschiebungsparameter variieren. -Erwartete qualitative Formen (ohne numerische Lösung): - Einflusslinie der vertikalen Reaktionskraft R_A^y : linear abfallend von F bei der Last am A-Punkt bis zu 0 bei C-Punkt; die Linie ist eine gerade Funktion von der Position der Vertikallast entlang AC. - Einflusslinie von R_C^y : linear steigend von 0 bei A bis F bei C. - Einflusslinien der Stabkräfte N_{AB}, N_{BC}, N_{AC} : je nach Lage der Last entlang AC können sie Phasenwechsel in der Form zeigen; bei einer vertikalen Last entlang der Basis (AC) tendieren AB und BC dazu, dass ihre Axialkräfte in Abhängigkeit von der Lastlage oft kleiner werden oder sich gegen Null bewegen; die exakten Kurven erhält man durch das Lösen des Gleichungssystems mit der jeweiligen Lastlage (virtueller Lastfall).

c) Verformung: Verschiebung des Knotens B in y-Richtung

Prinzip der virtuellen Weggrößen: Für eine lineare Stabstruktur gilt das Prinzip der virtuellen Weggrößen:

$$\delta_B = \sum_{i \in \{\text{AB,BC,AC}\}} \frac{N_i N_i' L_i}{E_i A_i},$$

wobei - N_i die reale Stabkraft des Stammes i (aus Aufgabe 1a), - N'_i die Stabkraft aus dem virtuellen Lastfall (Unitzlasterung in y-Richtung an B) für den Stamm i, - L_i Länge des Stammes i, - E_iA_i das Verfahren (bei gleichem Material/Querschnitt EA).

Virtueller Lastfall: Unitzlasterung in y-Richtung an B. Für den virtuellen Lastfall mit einer Einheitslast in y-Richtung am B ergeben sich (orientierte Größen) zueinander:

-
$$N'_{AB} = N'_{BC} = -\frac{1}{\sqrt{2}}$$
 (in kN, d. h. ca. -0.7071 kN), - $N'_{AC} = 0.5$ (in kN).

Die Stäbe haben dieselben Geometrie- und Materialwerte wie oben: - Längen: $L_{AB}=L_{BC}=2\sqrt{2}$ m ≈ 2.8284 m, $L_{AC}=4.0$ m. - Querschnittsfläche A=2000 mm² = 2.0×10^{-3} m²; E=210 GPa = 210×10^9 Pa. - $EA=210\times10^9\times2.0\times10^{-3}=4.20\times10^8$ N.

Berechnung von δ_B für die gegebene Last: Aus Aufgabe 1a gelten

$$N_{AB} = N_{BC} = -\frac{F_y}{\sqrt{2}} = -\frac{10 \text{ kN}}{\sqrt{2}} \approx -7.071 \text{ kN}, \quad N_{AC} = \frac{F_y}{2} = 5.0 \text{ kN}.$$

Einsetzen in die Deflationsformel:

$$\delta_B = \frac{N_{AB}N'_{AB}L_{AB}}{EA} + \frac{N_{BC}N'_{BC}L_{BC}}{EA} + \frac{N_{AC}N'_{AC}L_{AC}}{EA}.$$

Mit den Werten - $N_{AB}N'_{AB} = (-7.071 \text{ kN})(-0.7071 \text{ kN}) = 5.0 \text{ (kN)}^2$, - $L_{AB} = 2\sqrt{2} \text{ m} \approx 2.8284 \text{ m}$, - $N_{BC}N'_{BC} = 5.0 \text{ (kN)}^2$, $L_{BC} = 2.8284 \text{ m}$, - $N_{AC}N'_{AC} = (5.0 \text{ kN})(0.5 \text{ kN}) = 2.5 \text{ (kN)}^2$, - $L_{AC} = 4.0 \text{ m}$, - $EA = 4.2 \times 10^8 \text{ N}$,

ergibt sich (in SI-Einheiten):

$$\delta_B = \frac{(5.0 \times 2.8284) + (5.0 \times 2.8284) + (2.5 \times 4.0)}{4.2 \times 10^8} \text{ N} \cdot \text{m} = \frac{38.2843 \times 10^6}{4.2 \times 10^8} \text{ m} \approx 9.11 \times 10^{-2} \text{ m}.$$

Vorzeichen: Da die äußere Last F_y nach unten wirkt und die positive Richtung von y nach oben festgelegt ist, ist die Verschiebung von Knoten B nach unten positiv negativ in der gewählten Signatur; konkret ergibt sich $\delta_B \approx -0.091$ m (nach unten).

Zusammenfassung der numerischen Werte: $-\delta_B \approx -9.1 \times 10^{-2} \text{ m} = -91 \text{ mm}$ (nach unten).

Hinweis zur Darstellung: Die Werte gelten für den gegebenen Fall $F_y=10~\mathrm{kN}$ und die vorgegebenen Material-Querschnittswerte ($E=210~\mathrm{GPa},~A=2000~\mathrm{mm}^2$).

Lösung zu Aufgabe 2

Hinweis zur Vorgehensweise: In Aufgabe 2 geht es um das exemplarische Dreiecks-Tragwerk mit ähnlicher Geometrie, jedoch mit veränderten Lastsituationen. Die Aufgabenstellung fordert eine rein konzeptionelle Beurteilung der Einflusslinien und der Verformung mithilfe des virtuellen Weges, ohne explizite numerische Erzeugung der Linien.

a) Einflusslinien für eine veränderte Lastlage

- Zweck: Bestimmen, wie sich die Reaktionen R_A^y und R_C^y verändern, wenn die vertikale Last F_y nicht mehr am Knoten B, sondern entlang der Grundlinie \overline{AC} verschoben wird.
- Vorgehen (ohne Lösungsausgabe): Verwende die statische Gleichgewichtsbehandlung für die Struktur bei der jeweiligen Lastlage. Die Gesamtsumme der Vertikallasten muss erhalten bleiben:

$$R_A^y + R_C^y = F_y.$$

- Bestimme das Momentengleichgewicht bezüglich eines geeigneten Punktes (z. B. A oder C) mit der verschobenen Lastlage; daraus ergeben sich die Verteilungen von R_A^y und R_C^y linear in der Verschiebung entlang \overline{AC} (ähnlich dem Verhalten einer klassischen einfach unterstützten Stabetrittlagerung, sofern horizontale Reaktionen vernachlässigbar bleiben).
- Beschreibe qualitativ die Form der Einflusslinien: R_A^y fällt linear von F_y bis 0, während R_C^y linear von 0 bis F_y steigt, wenn der Lastpunkt von A nach C wandert.

b) Virtuelle Weggröße und Definition der Verschiebung

- Virtueller Lastfall: Eine Unitaz-last in y Richtung an einem beliebigen Punkt L der Grundlinie \overline{AC} .
- Bestimmung der virtuellen Stabkräfte N'_{AB} , N'_{BC} , N'_{AC} qualitativ: Für jeden möglichen Lagepunkt L der Unitlast wird das statische Gleichgewicht erneut gelöst; die resultierenden Stabkräfte liefern die Form der virtuellen Einflusslinien. Die Strahlungsrichtung der virtuellen Stabkräfte folgt denselben Richtlinien wie im Realfall (Tension positiv, Berücksichtigen der Orientierung der Stäbe).
- Beitrag zur Verschiebung: Die Deflection δ_B ergibt sich analog zum vorherigen Fall durch das virtuelle Weggrößenprinzip:

$$\delta_B = \sum_i \frac{N_i N_i' L_i}{E_i A_i},$$

wobei N_i' die virtuellen Stabkräfte aus dem Unitlastfall sind.

c) Interpretation

• Einflusslinien-Charakteristik: Die Form der Einflusslinien wird durch Geometrie (Längen der Stäbe, Abstände der Knoten) und durch die Verteilung der Steifigkeit E_iA_i geprägt. Längen und die Orientierung der Diagonalen beeinflussen die Vorzeichen und Beträge der virtuellen Kräfte.

ullet Rolle von Steifigkeit und Stablängen: Größere E_iA_i oder längere Stäbe mindern den Anteil der Verformung; kürzere bzw. steifere Stäbe verstärken die Anteile der Stabkräfte, die zur Deflection beitragen.