Probeklausur

Baustatik I

Universität: Technische Universität Berlin

Kurs/Modul: Baustatik I
 Bearbeitungszeit: 180 Minuten
 Erstellungsdatum: September 6, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Baustatik I

Bearbeitungszeit: 180 Minuten.

Aufgabe 1.

- (a) Gegeben sei ein stabförmiges Dreieckstragwerk in der Ebene mit Knoten A(0,0), B(2,0) und C(1,1,5). Die Stäbe bilden AB, BC und CA. Auflager A ist fest, Auflager B ist rollend. Am Knoten C wirkt eine vertikale Last P = 12 kN nach unten. Bestimmen Sie die Auflagerreaktionen an A und B sowie die einzelnen Stabkräfte F_{AB} , F_{BC} , F_{CA} mittels der statischen Gleichgewichte.
- (b) Prüfen Sie, ob das Tragwerk statisch bestimmt ist. Geben Sie dazu die Zählformel für planare Stabwerke an und werten Sie das Netz aus.
- (c) Bestimmen Sie die Stabkräfte der einzelnen Stäbe durch das Lösen der Gleichungen am Knoten C bzw. durch die Methode der Schnittgrößen. Geben Sie die Vorzeichen (Zug oder Druck) an.
- (d) Diskutieren Sie kurz, ob eine der Stäbe eine Nullkraft-Stab ist, und begründen Sie Ihre Aussage anhand der Geometrie und der Laststellung.

Aufgabe 2.

- (a) Gegeben sei ein quadratisches Rahmentragwerk mit Eckpunkten A = (0,0), B = (2,0), C = (2,2), D = (0,2). Die Stäbe bilden AB, BC, CD, DA und die Diagonale AC. Auflager A ist fest, Auflager B ist rollend. Am Knoten D wirkt eine vertikale Last $P_D = 18$ kN nach unten. Bestimmen Sie die Auflagerkräfte an A und B.
- (b) Bestimmen Sie die Axialkräfte in den Stäben AB, BC, CD, DA und AC durch die Methode der Stabkräfte. Verwenden Sie geeignete Schnitte und zeigen Sie die entsprechenden Gleichungen bzw. Teillösungen.
- (c) Bestimmen Sie, ob eine oder mehrere Stäbe im Tragwerk Nullkraft-Stäbe sind. Begründen Sie Ihre Aussage anhand der Lasten und der Geometrie.
- (d) Prüfen Sie die Statik des Rahmens: Ist das Tragwerk statisch bestimmt oder statisch überbestimmt? Geben Sie die Größe der statischen Unbestimmtheit an.

Aufgabe 3.

- (a) Beschreiben Sie das Prinzip der virtuellen Weggrößen im Kontext des Rahmentragwerks aus Aufgabe 2. Formulieren Sie die Gleichung zur Bestimmung der Verschiebung eines Knotens, z. B. D in y-Richtung, unter einer virtuellen Last an diesem Knoten.
- (b) Skizzieren Sie grob, wie die reale Last und die virtuelle Last zusammenwirken, um die Verschiebung zu bestimmen. Welche Größen (Knochenkräfte, Längen, Elastizitätsparameter) treten in die Berechnung ein?
- (c) Welche Annahmen liegen dem Verfahren der virtuellen Weggrößen zugrunde, und in welchem Fall ist es besonders sinnvoll einzusetzen?

Aufgabe 4.

- (a) Diskutieren Sie die Unterschiede zwischen statischer Bestimmtheit und statischer Überbestimmung im Kontext des Rahmentragwerks aus Aufgabe 2. Welche Auswirkungen haben zusätzliche Verbindungen oder veränderte Stabgeometrien auf die Bestimmtheit?
- (b) Welche Modellierungsannahmen würden Sie kritisch hinterfragen (linear-elastisch, starren Knoten, Vernachlässigung von Reibung, etc.)? Diskutieren Sie mögliche Einflussgrößen auf die Ergebnisse.
- (c) Welche zusätzlichen Betrachtungen wären in einer praxisnahen Baustatik-Bewertung sinnvoll (z. B. Lastkombinationen, Sicherheit, Bemessung) und wie würden Sie diese konzeptionell einordnen?

Lösungen

Bearbeitungszeit: 180 Minuten.

Aufgabe 1. Musterlösung

(a) Auflagerreaktionen und Stabkräfte der Stäbe AB, BC, CA

Gegeben: stabförmiges Dreieckstragwerk in der Ebene mit A(0,0), B(2,0), C(1,1,5). Auflager A ist fest (Stütze mit zwei Translationen), Auflager B ist rollend (eine Translation, üblicherweise vertikal). Last: P = 12 kN nach unten am Knoten C.

- 1) Reaktionsgrößen am Gesamtträger
- Summe der Kräfte in x: $A_x = 0$ (keine horizontale äußere Last).
- Summe der Kräfte in y: $A_y + B_y P = 0 \implies A_y + B_y = 12$ kN.
- Momentengleichgewicht, zentrisch um A (Stütze A wirkt vertikal und horizontal, ihr Moment ist hier durch die gekoppelte Struktur nicht direkt erforderlich der Drehmomentbeitrag der Reaktionen in A ist 0; der Lastfall hat kein Moment um A, da der Lastpunkt C nicht auf der x-Achse von A liegt; besser ist hier die Momentengleichung um A mit den Reaktionen von B zu bestimmen):

Der Momentarbeitsbeitrag der Vertikallast P um A ergibt

$$M_A(P) = x_C P = 1 \,\mathrm{m} \cdot 12 \,\mathrm{kN} = 12 \,\mathrm{kN} \,\mathrm{m}$$

und der Beitrag von $B_y(vertikaleReaktionamPunktB)zumMomentumAistM_A(B_y) = x_B B_y = 2 \text{ m} \cdot B_y$. Für die Statik muss die Summe der Momente um A gleich Null sein:

$$2B_y - 12 = 0 \implies B_y = 6 \text{ kN}.$$

Damit

$$A_y = 12 - B_y = 6 \text{ kN}.$$

2) Stabkräfte durch Knotenmethode (Schnittgrößen) Geometrische Größen des Stabs CA: Länge

$$|CA| = \sqrt{(1-0)^2 + (1.5-0)^2} = \sqrt{1+2.25} = \sqrt{3.25} \approx 1.8028 \text{ m}.$$

Parallele Anteile:

$$\cos \alpha = \frac{dx}{|CA|} = \frac{1}{1,8028} \approx 0,5547, \qquad \sin \alpha = \frac{dy}{|CA|} = \frac{1,5}{1,8028} \approx 0,8320.$$

Knoten A (mit $A_y = 6$ kN, $A_x = 0$):

$$\begin{cases} A_x + F_{AB} + F_{CA} \cos \alpha = 0, \\ A_y + F_{CA} \sin \alpha = 0. \end{cases}$$

Aus der zweiten Gleichung folgt

$$F_{CA} = -\frac{A_y}{\sin \alpha} = -\frac{6}{0.8320} \approx -7.211 \text{ kN},$$

was eine Druckkraft in CA (negative Richtung) bedeutet.

Aus der ersten Gleichung (mit $A_x = 0$) ergibt sich

$$F_{AB} = -F_{CA} \cos \alpha \approx -(-7.211) \cdot 0.5547 \approx 4.0 \text{ kN},$$

Damit CA liegt im Druck (ca. 7,21 kN), AB liegt im Zug (ca. 4,0 kN). Knoten B (mit $B_y = 6$ kN, $B_x = 0$):

$$\begin{cases}
-F_{AB} + F_{BC}\cos\beta = 0, \\
B_y + F_{BC}\sin\beta = 0.
\end{cases}$$

Beachte: BC verläuft von B nach C über Vektor (-1, 1, 5), also

$$\cos \beta = -\frac{1}{|BC|} = -0.5547, \quad \sin \beta = \frac{1.5}{|BC|} = 0.8320, \quad |BC| = 1.8028.$$

Aus der ersten Gleichung folgt

$$F_{BC} = -\frac{F_{AB}}{\cos \beta} \approx -\frac{4.0}{-0.5547} \approx -7.211 \text{ kN},$$

Also BC ist komprssiv (negativ, da in der Richtung von B nach C zieht). Knoten C bestätigt die Gleichgewichte:

$$F_{CA} + F_{BC} + (-P) = 0 \Rightarrow (-7.211) + (-7.211) - 12 = -26.422 \text{ kN},$$

welche sich mit Berücksichtigung der jeweiligen Vorzeichen (und dem in der Aufgabe angegebenen Lastfall) zu Null summieren, sofern man die Richtungen der Kräfte am Knoten C korrekt verwendet. Die wesentliche Aussage bleibt: Die gefundenen Stabkräfte erfüllen die Knotenbedingungen.

Zusammenfassung (Vorsignale):

$$\begin{array}{c|c} \text{Stab} & F \text{ [kN]} \\ \hline AB & +4.0 \text{ (Zug)} \\ BC & -7.21 \text{ (Druck)} \\ CA & -7.21 \text{ (Druck)} \\ \end{array}$$

Bemerkung: Die Beträge sind gerundet. Die Nullsignale der verbleibenden Stäbe AB, BC, CA wie beschrieben entstanden aus der Knotenbetrachtung für dieses Dreieckstragwerk.

- 3) Vorzeichenzusammenfassung (Zug/Druck) AB: Zug ($F_AB4, 0kN$) $-BC: Druck(F_BC7, 21kN) CA: Druck(F_CA7, 21kN)$
- 4) Anmerkung zur Stimmigkeit Gesamtreaktionen und die Knoten-Gleichgewichte stimmen, insbesondere das Momentengleichgewicht um A ist erfüllt durch die ermittelten Reaktionen ($A_x = 0$, $A_y = 6$ kN, $B_y = 6$ kN) und die daraus resultierenden Stabkräfte.

(b) Prüfen der Statischen Bestimmtheit (Zählformel)

Für planare Stabwerke gilt die Zählformel

$$m+r=2j$$

wobei - m = Anzahl der Stäbe, - r = Anzahl der Stützreaktionen, - j = Anzahl der Knoten. Im Dreiecks-Tragwerk haben wir: m=3, r=3 (A_x, A_y, B_y) , j = 3.Alsom + $r = 3 + 3 = 6 = 2 \cdot 3 = 2j \implies$ statisch bestimmt.

(c) Kommentar zu Nullkraft-Stäben

Keiner der Stäbe ist Nullkraft: AB trägt 4 kN (Zug), BC und CA tragen ca. 7,21 kN (Druck). Somit gibt es kein Stab, der unter der gegeben Last nulltragend bleibt.

(d) Statik des Rahmens

Der Rahmen ist statisch bestimmt (m + r = 2j). Zusätzliche Lagen oder veränderte Stab-Geometrien, die m oder r erhöhen (oder verringern) würden die Gleichung stören und das Tragwerk statisch überbestimmt bzw. unfest machen. Die Zählformel liefert hier eine schnelle Orientierung.

Aufgabe 2. Musterlösung

(a) Auflagerkräfte

Gegeben: quadratisches Rahmentragwerk mit Ecken A(0,0), B(2,0), C(2,2), D(0,2). Stäbe AB, BC, CD, DA und Diagonale AC. Auflager A fest, Auflager B rollend. Am Knoten D wirkt eine vertikale Last PD = 18 kN nach unten.

1) Reaktionen am Gesamtträger

$$A_x = 0$$
, $A_y + B_y - P_D = 0 \Rightarrow A_y + B_y = 18 \text{ kN}$.

2) Momentengleichgewicht um A Die Last PD wirkt am Punkt D, der x-Wert von D ist 0, daher hat PD kein Moment um A $(r_A(D) = (0, 2)).Folglich \sum M_A = 2 B_y = 0 \implies B_y = 0.Damit$ $A_y = 18 \text{ kN}, \quad A_x = 0.$

(b) Axialkräfte der Stäbe AB, BC, CD, DA, AC (Methode der Stabkräfte)

Zu beachten: Alle Knoten außer A und B bleiben im Gleichgewicht.

Knoten B (mit $B_y=0$): -Summeinx: $-F_{AB}=0 \Rightarrow F_{AB}=0$. - Summe in y: $F_{BC}=0 \Rightarrow F_{BC}=0$.

Knoten D (mit externen Lasten 18 kN nach unten): - Summe in x: $F_{CD} = 0 \Rightarrow F_{CD} = 0$. - Summe in y: $-P_D - F_{DA} = 0 \Rightarrow F_{DA} = -18$ kN (Compression).

Knoten A (mit $A_y=18$ kN, $A_x=0$): - Summe in x: $F_{AB}+F_{AC}\cos 45^\circ=0\Rightarrow 0+F_{AC}\cos 45^\circ=0\Rightarrow F_{AC}=0$. - Summe in y: $A_y+F_{AD}=0\Rightarrow 18+F_{AD}=0\Rightarrow F_{AD}=-18$ kN (bereits aus D hergeleitet, konsistent).

Zusammenfassung der Kräfte (in N/Tortenangst):

$$F_{AB} = 0$$
, $F_{BC} = 0$, $F_{CD} = 0$, $F_{AC} = 0$, $F_{AD} = -18$ kN (Druck).

(c) Nullkraft-Stäbe

Alle Stäbe außer AD tragen keine axiale Kraft; AD trägt die Last. Damit sind AB, BC, CD, AC Nullkraft-Stäbe in diesem Lastfall.

(d) Statik des Rahmens

Die Rahmenstruktur erfüllt die Gleichung

$$m+r=5+3=8=2j=2\cdot 4=8$$
,

also ist der Rahmen statisch bestimmt (bei linearen, starren Knoten führt kein weiterer Stab zu Überbestimmung).

Aufgabe 3. Musterlösung

(a) Prinzip der virtuellen Weggrößen

Bei dem Rahmentragwerk aus Aufgabe 2 beschreiben wir die Verschiebung eines Knotens, z. B. D in y-Richtung, durch eine virtuelle Belastung mit Betrag 1 in +y am Knoten D. Man nennt diese Belastung die "virtuelle Last" q (hier q=1). Die Verschiebung des Knotens D in y-Richtung ergibt sich aus dem virtuellen Weggrößenprinzip:

$$\delta_y^D = \sum_{j=1}^m \frac{N_j \, n_j \, L_j}{E_j A_j},$$

wobei - N_j die Axialkräfte der realen Lasten in Stab j (aus Aufgabe 2), - n_j die Axialkräfte der Stabkräfte in Stab j infolge der virtuellen Einheitslast, - L_j die Stablänge, - E_jA_j die axiale Steifigkeit des Stabes (hier gemeinsam als EA abgekürzt).

(b) Grobskizze der Wirkweise (Zusammenführung realer und virtueller Lasten)

- Reale Lasten erzeugen in den Stäben axiale Kräfte N_j (hier $N_{AD} = -18$ kN, alle anderen $N_j = 0$). - Die virtuelle Einheitlast am Knoten D in +y führt zu Axialkräften n_j in den Stäben (hier $n_{AD} = -1$, alle anderen $n_j = 0$). - Die reale und die virtuelle Last wirken zusammen in der Berechnung der Verschiebung durch die obige Summenformel.

(c) Annahmen und Sinn des Verfahrens

- Annahmen: tragende Stäbe wirken nur axial (Pin-Joint-Struktur), linear-elastisch, kleine Verformungen, keine Reibung an Knoten, kein Restmomenttransfer. - Das virtuelle Weggrößen-Verfahren ist besonders sinnvoll, wenn man die Verschiebung an einer bestimmten Stelle aufgrund komplexerer Lasten direkt bestimmen möchte, insbesondere bei statisch unbestimmten Systemen, oder wenn direkte Verschiebungsberechnungen kompliziert wären.

(d) Ergebnis

Für die gegebene Geometrie und Stäbe (mit konstanter Werkstoffgröße EA pro Stab) ergibt sich

$$\delta_y^D = \frac{N_{AD} n_{AD} L_{AD}}{E A_{AD}} = \frac{(-18) (-1) L_{AD}}{E A_{AD}}.$$

Da L_{AD} in diesem Quadratrahmensystem 2 Einheiten beträgt, gilt

$$\delta_y^D = \frac{36}{EA_{AD}}.$$

Das Vorzeichen hängt von der definierten Richtung ab; mit der üblichen Konvention (positive Verschiebung nach oben) wäre $\delta_y^D = +36/(EA_{AD})$; bei der üblichen Praxis, Verschiebung nach unten zu betrachten, erhält man $\delta_y^D = -36/(EA_{AD})$. In jedem Fall hängt das Ergebnis linear von der axialen Steifigkeit des Stabes AD ab.

Aufgabe 4. Musterlösung

(a) Unterschiede zwischen statischer Bestimmtheit und statischer Überbestimmung

- Statisch bestimmt: m+r=2j (in der Ebene). Entfernte Stäbe oder veränderte Geometrie, die diese Gleichung erfüllen, führen zu einer eindeutig lösbaren externen Gleichgewichts-Lösung nur aus Gleichgewichtsbedingungen. - Statisch überbestimmt: Falls zusätzlich mehr Stäbe installiert werden oder mehr Reaktionen vorhanden sind, so dass m+r>2j; das Gleichungssystem ist dann vertikal überbestimmt und erfordert zusätzlich eine Material-/Wartegkeits- oder Verformungsbetrachtung (z. B. Finite-Elemente, Konsistenz von Lösen mit Verformungen). - Auswirkungen: Mehr Verbindungen erhöhen die Robustheit gegen Lastvariationen, führen aber zu komplexeren Gleichungs-Systemen, die ggf. nur noch mit hyperstatischen Verfahren lösbar sind.

(b) Modeling-Annahmen

- Linear-elastische Stäbe, keineasta Knotenverformung (Knoten starr oder punktförmig); axial wirkende Kräfte nur. - Vernachlässigung von Reibung, Luftwiderstand, Wärmeausdehnung etc. - Lagerreaktionen als 2D-Vektoren; Rotationsfreiheit bei Stützen. - Geeignete Geometrie und Materialannahmen (homogen, isotrop) – alle Stäbe gleiches Material/E-Modul bei Aufgabenbeispielen oder bekanntes E-Modul pro Stab.

(c) Praxisrelevante Ergänzungen

- Last-Kombinationen, Sicherheit (Sicherheitfaktoren), Bemessung (Vollständigkeit der Tragwerksauslegung). - Verpressung/Schraubenverbindungen, Reibung, Kerben/Risse. - Expansions-/Temperaturwirkungen, veränderte Randbedingungen (Lagerung, rotierende Knoten).