# Probeklausur

## Theoretische Grundlagen der Informatik

Universität: Technische Universität Berlin

Kurs/Modul: Theoretische Grundlagen der Informatik

Bearbeitungszeit: 180 Minuten

Erstellungsdatum: September 19, 2025



Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Theoretische Grundlagen der Informatik

#### Bearbeitungszeit: 180 Minuten.

#### Aufgabe 1.

(a) Definieren Sie eine Sprache über dem Alphabet  $\{a, b\}$  durch

$$L_1 = \{ w \in \{a, b\}^* \mid w \text{ enthält eine gerade Anzahl von } a$$
's  $\}$ .

Geben Sie eine deterministische endliche Automaton(M) an, der  $L_1$  akzeptiert, oder beschreiben Sie eine äquivalente reguläre Grammatik.

- (b) Seien  $\Sigma = \{a, b\}$  und  $L_2 = \{a^n b^n \mid n \geq 0\}$ . Geben Sie eine kontextfreie Grammatik  $G = (V, \Sigma, P, S)$  an, die  $L_2$  erzeugt. Definieren Sie Startsymbol, Produktionen und erläutern Sie die Erzeugung grob.
- (c) Beweisen Sie mittels Pumping-Lemma, dass  $L_3 = \{ a^n b^n c^n \mid n \geq 0 \}$  nicht kontextfrei ist.
- (d) Skizzieren Sie die Umformung der Grammatik G aus Teil (b) in Chomsky-Normalform. Nennen Sie grob die notwendigen Schritte und welche Typen von Produktionen entstehen können.

#### Aufgabe 2.

- (a) Seien  $\Sigma = \{0,1\}$  und  $L_4 = \{w \in \{0,1\}^* \mid \text{Anzahl der Einsen in } w \text{ ist durch 3 teilbar } \}$ . Geben Sie einen deterministischen endlichen Automaten M mit Zustandsmenge und Übergangsrelation an, der  $L_4$  akzeptiert.
- (b) Zeigen Sie, dass  $L_4$  auch von einem Kellerautomaten akzeptiert wird, und skizzieren Sie eine Stack-Verifikation, die dies ermöglicht.
- (c) Geben Sie eine Sprache  $L_5$  an, die von einem Kellerautomaten akzeptiert wird, aber nicht von einem endlichen Automaten. Begründen Sie Ihre Wahl.
- (d) Diskutieren Sie, ob die folgende Sprache von einem endlichen Automaten akzeptiert werden kann:

$$L_6 = \{ w \in \{a, b\}^* \mid \#a(w) = \#b(w) \}.$$

Begründen Sie Ihre Einschätzung.

### Aufgabe 3.

(a) Beschreiben Sie eine Turingmaschine M, die entscheidet

$$L_7 = \{ w \in \{0,1\}^* \mid w \text{ enthält genau zwei Einsen } \}.$$

Geben Sie das Eingabeformat an und die groben Berechnungsschritte.

- (b) Zeigen Sie, dass das Halteproblem HALT unentscheidbar ist. Skizzieren Sie die zentrale Idee der Begründung, ohne vollständige Beweise zu liefern.
- (c) Erläutern Sie die Idee einer Reduktion von SAT auf 3-SAT, und warum Reduktionen zentral für NP-Vollständigkeit sind. Geben Sie eine grobe Transformationsidee an.
- (d) Diskutieren Sie, wie die Begriffe P, NP und NP-Vollständigkeit im Konzept der theoretischen Informatik interpretiert werden und welche praktischen Auswirkungen NP-Vollständigkeit auf Lösungsansätze hat.

## Aufgabe 4.

- (a) Definieren Sie die Klassen P, NP und NP-Vollständigkeit. Formulieren Sie präzise, wie eine Reduktion zwischen Problemen durchzuführen ist.
- (b) Beweisen Sie, dass das Problem 3-SAT NP-vollständig ist, indem Sie eine Reduktion von SAT auf 3-SAT verwenden. Skizzieren Sie die Transformation der Klauseln und die Erhaltung der Lösbarkeit.
- (c) Nennen Sie zwei typische NP-vollständige Probleme und geben Sie jeweils eine grobe Reduktionsidee an.
- (d) Diskutieren Sie kurz, wie  $P \subseteq NP$  interpretiert wird und welche praktischen Implikationen NP-Vollständigkeit für algorithmische Lösungsansätze hat.

Lösungen

Bearbeitungszeit: 180 Minuten.

## Lösung 1.(a).

Deterministischer endlicher Automat M (oder äquivalente reguläre Grammatik).

- DFA M:  $M = (Q, \Sigma, \delta, q_0, F)$  mit -  $Q = \{q_0, q_1\}$ , -  $\Sigma = \{a, b\}$ , - Startzustand  $q_0$ , - Endzustand  $F = \{q_0\}$ , - Übergangsfunktion  $\delta$ : -  $\delta(q_0, a) = q_1$ ,  $\delta(q_0, b) = q_0$ , -  $\delta(q_1, a) = q_0$ ,  $\delta(q_1, b) = q_1$ .

Begründung: Der Zustand encodiert Parität der Anzahl der vorkommenden a. Sind a's gerade gezählt, befindet sich der Automat im Zustand  $q_0$  und akzeptiert. Jeder durchlaufene a wechselt die Parität, b beeinflusst die Parität nicht.

- Äquivalente reguläre Grammatik  $G = (V, \Sigma, P, S)$ : -  $V = \{S, A\}$ ,  $\Sigma = \{a, b\}$ , Startsymbol S. - Produktionen P: -  $S \to bS \mid aA$ , -  $A \to bA \mid aS$ . - Erklärung: S steht für gerade Anzahl von a's, A für ungerade Anzahl. Jede Produktion erhöht bzw. bewahrt die Parität entsprechend; akzeptiert werden alle erzeugten Sätze, die in S enden.

#### Lösung 1.(b).

Kontextfreie Grammatik  $G = (V, \Sigma, P, S)$  für  $L_2 = \{a^n b^n \mid n \ge 0\}$ .

-  $\Sigma = \{a,b\}$ ,  $V = \{S\}$ , Startsymbol S. - Produktionen P: -  $S \to aSb \mid \varepsilon$ . - Erläuterung: Jede Ableitung erzeugt gleich viele a's am Anfang und b's am Ende; damit ist genau  $L_2$  erzeugt.

## Lösung 1.(c).

Pumping-Lemma: Nicht-KF (für  $L_3 = \{a^n b^n c^n \mid n \ge 0\}$ ).

- Angenommen,  $L_3$  sei kontextfrei und p sei eine Pumping-Länge. - Wähle  $w=a^pb^pc^p\in L_3$ . - Nach Pumping-Lemma lässt sich w=xyz mit  $|xy|\leq p,\ |y|>0$  schreiben, sodass  $xy^iz\in L_3$  für alle  $i\geq 0$ . - Da  $|xy|\leq p$  gilt, besteht y nur aus Buchstaben aus dem Prefix  $a^p$ ; also  $y=a^k$  mit k>0. - Wählen wir i=0:  $xz=a^{p-k}b^pc^p$ . - Die Anzahl der a's ist ungerade oder ungleich der Anzahl der b's bzw. c's; damit gilt  $xz\notin L_3$ . - Widerspruch. Also ist  $L_3$  nicht kontextfrei.

#### Lösung 1.(d).

Skizzierte Umformung von G in Chomsky-Normalform (CNF).

- Ausgangs-Grammatik  $G=(\{S\},\{a,b\},P,S)$  mit  $P=\{S\to aSb,\ S\to \varepsilon\}$ . Schritte (grobe Skizze): 1) Neuer Startsymbol  $S_0$  einführen, um  $\varepsilon$  abzubilden:  $S_0\to S\mid \varepsilon$  (Beibehaltung von  $\varepsilon$  am Start). 2) Terminale auf Nichtterminale abschreiben:  $A\to a,\ B\to b$ . 3) Die Regel  $S\to aSb$  in CNF überführen: Zunächst  $S\to ASB$  (mit A und B wie oben). Dann eine Zwischenregel einführen:  $S\to AT,\ T\to SB$ . 4) Unit-Produktionen entfernen (hier zielt man darauf ab, startseitig den Übergang direkt in CNF zu haben). Eine mögliche CNF-Form (eine mögliche, grobe CNF-Variante) lautet:  $S_0\to AT\mid \varepsilon$   $T\to SB$   $S\to AT$   $A\to a$   $B\to b$
- Typen von Produktionen in CNF:  $\mathbf{A} \to BCoderA \to a; (ZustzlichStartregelS_0 \to \varepsilon$  zulässig, falls  $\varepsilon$  zur Sprache gehört.)
- Hinweis: Die obige Skizze illustriert die typischen Schritte (Elimination von  $\varepsilon$ -Produktionen, Beseitigung von Unit-Produktionen, Ersetzung von Terminalsymbolen durch Nichtterminale, Zerlegung langer RHS in binäre Produktionen). Eine vollständige CNF-Umformung erfordert die vollständige Eliminierung sämtlicher Einheiten und eine rigorose Umformung aller Produktionen in die binäre Form; das hier

dargestellte Muster verdeutlicht jedoch die Art der Umformungen und die entstehenden Produktionen.

#### Lösung 2.(a).

Deterministischer endlicher Automat für  $L_4 = \{w \in \{0,1\}^* \mid \#1(w) \equiv 0 \pmod{3}\}$ .

- DFA M mit Zuständen  $Q = \{q_0, q_1, q_2\}$ , Startzustand  $q_0$ , Endzustand  $F = \{q_0\}$ , Alphabet  $\Sigma = \{0, 1\}$ . - Übergänge (Modulo-3-Zähler der Einsen): - von  $q_0$ :  $\delta(q_0, 0) = q_0$ ,  $\delta(q_0, 1) = q_1$  - von  $q_1$ :  $\delta(q_1, 0) = q_1$ ,  $\delta(q_1, 1) = q_2$  - von  $q_2$ :  $\delta(q_2, 0) = q_2$ ,  $\delta(q_2, 1) = q_0$  - Begründung: Die Anzahl der Einsen wird modulo 3 gezählt; akzeptiert wird, wenn der Rest 0 ist (also in  $q_0$ ).

## Lösung 2.(b).

Kellerautomat (Pushdown-Automat, PDA) für  $L_4$  (reguläre Sprache).

- Da  $L_4$  regulär ist, akzeptiert ein PDA diese Sprache auch durch endlichen Anteil des Stack-Verwaltungsverhaltens. - Eine naheliegende PDA-Implementierung: - Stackalphabet:  $\{Z, R_0, R_1, R_2\}$  mit Startstapelzeichen Z und Startzustand q. - Zustandsmatrix (eine einfache Form): - Für Input 0: der Stackinhalt bleibt unverändert (Top bleibt gleich). - Für Input 1: Top-Symbol aktualisiert gemäß Restklasse:  $R_0 \to R_1, R_1 \to R_2, R_2 \to R_0 \pmod{3}$ . - Startzustand q mit initialem Stack  $ZR_0$  (Z als Bodensymbol, top ist  $R_0$ ). - Abschlussbedingung: Akzeptieren, wenn der Input vollständig gelesen ist und der Top des Stacks  $R_0$  ist (entspricht Rest 0). - Explanation: Der PDA zählt die Anzahl der Einsen modulo 3 auf dem Stack, während Nullen das Zählen bzw. den Stack nicht verändern. Am Ende akzeptiert er, wenn der Rest 0 ist.

#### Lösung 2.(c).

L5: Sprache, die von einem PDA akzeptiert wird, aber nicht von einem DFA.

- Vorschlag:  $L_5 = \{a^nb^n \mid n \geq 0\}$ . - Begründung: -  $L_5$  ist kontextfrei; es gibt eine PDA, die genau diese Gleichheit von a- und b-Anzahlen mittels Stack prüfen kann (Push für jedes a, Pop für jedes b; am Ende leerer Stack akzeptiert). -  $L_5$  ist jedoch nicht regulär (Beispiel mittels Pumping-Lemma: wähle  $w = a^pb^p$ ; dem Pumping-Lemma widerspricht, da das Pumpen von Teilen aus dem Anfangsblock die Gleichheit von Zählungen zerstört). - Begründung für Wahl: Diese Sprache illustriert einen klassischen Unterschied zwischen Regularität und Kontextfreiheit – von einem PDA akzeptierbar, aber nicht von einem DFA.

#### Lösung 2.(d).

Kann L<sub>6</sub> von einem DFA akzeptiert werden?  $L_6 = \{w \in \{a,b\}^* \mid \#a(w) = \#b(w)\}.$ 

- Nein.  $L_6$  ist nicht regulär. - Begründung (Pumping Lemma): Sei p die Pumping-Länge. Betrachte  $w=a^pb^p\in L_6$ . Zerlege w=xyz mit  $|xy|\leq p$  und |y|>0. Dann enthält y nur a's. Wähle i=0:  $xz=a^{p-|y|}b^p$ ; hier gilt  $\#a\neq \#b$ . Damit ist  $xz\notin L_6$ , Widerspruch. Also ist  $L_6$  nicht regulär.

Lösung 3.(a).

Turingmaschine M, die genau zwei Einsen akzeptiert:

- Eingabeformat: ein Band mit  $w \in \{0,1\}^*$  ohne zusätzliche Beschränkungen (andere Zeichen als 0/1 werden verworfen/abgelehnt). - Vorgehen in drei Phasen (Markieren und Zählen): 1) Suche nach der ersten Eins: - Kopf wandert links, bis eine 1 gefunden wird. - schreibe ein Markierungssymbol (z. B. X) über diese 1; wenn keine 1 gefunden wird, akzeptiert/verweigert entsprechend. 2) Suche nach der zweiten Eins: - Kopf fortsetzen, Nullen ignorieren, bis die zweite 1 gefunden wird. - schreibe ein weiteres Markierungssymbol (z. B. Y) über diese zweite 1. 3) Prüfung, ob exakt zwei Einsen vorhanden sind: - Kopf fährt zum rechten Rand und prüft, ob danach noch eine weitere 1 vorkommt. - Wenn noch eine 1 gefunden wird, lehnt ab; ansonsten akzeptiert. - Akzeptieren: Der Ringzustand/Endzustand wird erreicht, wenn genau zwei Einsen markiert sind und danach keine weiteren Einsen mehr erscheinen.

Hinweis: Dies ist eine typische, kompakte Beschreibung eines Ein-Tape-Türingautomaten mit Markierungen, der die Eigenschaft "genau zwei Einsen" überprüft.

Lösung 3.(b).

Halteproblem HALT ist unentscheidbar.

- Standardbeweis durch Reduktion von Diagonalargumenten: Angenommen, HALT sei entscheidbar durch eine Turingmaschine H. - Konstruktion einer Turingmaschine D (Diagonal), die als Eingabe die Beschreibung einer Turingmaschine M erhält und siebie selbst auf Eingabe D verhält, führt zu Widerspruch. - Die Kernaussage: Widerspruch entsteht, indem man D(D) betrachtet und zeigt, dass D genau dann hält, wenn D nicht hält – ein klassischer Beweis durch Reduktion, der die Unentscheidbarkeit von HALT zeigt.

Lösung 3.(c).

Reduktion von SAT auf 3-SAT (grobe Transformationsidee).

- Ziel: Jede Klausel einer CNF-Form  $\phi$  in eine Menge 3-literaler Klauseln umformen, so dass  $\phi$  lösbar ist genau dann  $\phi'$  lösbar. - Vorgehen (Standardtechnik): - Für eine Klausel mit Länge k>3 füge neue Variablen  $y_1,\ldots,y_{k-3}$  ein und ersetze die Klausel

$$(l_1 \vee l_2 \vee \cdots \vee l_k)$$

durch eine Konjunktion von 3-literal-Klauseln:

$$(l_1 \vee l_2 \vee y_1) \wedge (\neg y_1 \vee l_3 \vee y_2) \wedge (\neg y_2 \vee l_4 \vee y_3) \wedge \cdots \wedge (\neg y_{k-3} \vee l_k).$$

- Klauseln mit k=1 oder k=2 werden entsprechend durch kleine Umformungen (Beibehaltung oder Hinzufügen von Dummy-Variablen) angepasst, damit alle Klauseln drei Literale haben. - Eigenschaft: Die Umformung ist in polynomieller Zeit;  $\phi$  ist genau dann satisfizierbar, wenn  $\phi'$  satisfizierbar.

Lösung 3.(d).

Interpretation von P, NP, NP-Vollständigkeit; praktische Auswirkungen.

- P-Theorie: Losbare Probleme in polynomialer Zeit durch deterministische Turingmaschinen. - NP: Nichtdeterministische Polynomialzeit-Lösungen – von außen

überprüfbar, ob eine gegebene Lösung korrekt ist. - NP-Vollständigkeit: Ein Problem ist NP-vollständig, wenn es in NP liegt und jedes Problem in NP in polynomieller Zeit darauf reduzierbar ist. - Praktische Auswirkungen: - Falls P NP, gibt es keine generischen polynomialzeitlichen Algorithmen für NP-vollständige Probleme. - In Praxis werden oft heuristicle, approximative oder spezialisierte Algorithmen eingesetzt; viele NP-vollständige Probleme treten in der Praxis mit typischen Strukturen auf, die effektive Lösungen ermöglichen. - NP-Vollständigkeit motiviert die Entwicklung von Grenztheorie, FPT-Analysen, Parameterelbst-Optimierungen und problem-spezifischen Heuristiken.

#### Lösung 4.(a).

Definitionen und Reduktionsbegriff.

- Klassen: P, NP und NP-Vollständigkeit. - Reduktion: Sei A,B Sprachen. Eine Reduktion  $A \leq_p B$  bedeutet, dass es eine polynomiell berechenbare Funktion f gibt mit

$$\forall x: x \in A \text{ gl. } f(x) \in B.$$

- Reduktion erklärt, wie die Lösung eines Problems in Polynomialzeit in ein anderes Problem übertragen werden kann.

## Lösung 4.(b).

Beweis, dass 3-SAT NP-vollständig ist (Reduktion von SAT auf 3-SAT).

- Vorgehen: Gegeben sei eine beliebige SAT-Formel  $\phi$  in konjunktiver Normalform (CNF). Alle Klauseln fester Länge  $\geq 3$  werden schrittweise in 3-literal-Klauseln transformiert, wie in 3.(c) beschrieben. - Transformationsfunktion f ist polynomiell berechenbar. - Erhaltung der Lösbarkeit:  $\phi$  ist erfüllbar genau dann, wenn  $\phi' = f(\phi)$  erfüllbar ist. - Somit ist 3-SAT NP-vollständig.

#### Lösung 4.(c).

Zwei typische NP-vollständige Probleme und grobe Reduktionsideen.

- Beispiel 1: Vertex-Cover - Eingabe: Graph G=(V,E) und Zahl k. - Frage: Gibt es eine Teilmenge  $C\subseteq V$  mit  $|C|\le k$ , sodass jedes Kante mindestens einen Endknoten in C hat? - Reduktionsidee: Von einer FORMEL (z. B. 3-SAT) zu Vertex-Cover; mittels standardisiertem Gadget-Design wird eine Belegung erzeugt, die genau dann existiert, wenn die Klauseln erfüllbar sind. - Beispiel 2: Clique - Eingabe: Graph G und Zahl k. - Frage: Existiert eine k-Clique in G? - Reduktionsidee: Aus SAT/3-SAT oder Vertex-Cover lassen sich entsprechende Graphen bauen, so dass eine erfüllende Belegung bzw. eine kleine Vertex-Cover-Schnittstelle eine k-Clique ergibt. (Grobe Idee: Konstruieren eines Graphen, in dem Clique-Existenz mit einer logischen Bedingung verknüpft ist.)

#### Lösung 4.(d).

Interpretation von  $P \subseteq NP$ ; Implikationen.

- Interpretation: Alle in P lösbaren Probleme liegen auch in NP (weil Polynomialzeit-Lösungen von Zertifikaten geprüft werden können; Null-Zertifikate existieren). Die Frage, ob P gleich NP ist, bleibt offen. - Praktische Implikationen: - Falls P = NP, gäbe es mittlere, generische polynomialzeitliche Algorithmen für NP-vollständige

Probleme. - Ist P ungleich NP, bleiben NP-vollständige Probleme schwer; Fokus liegt auf heuristischen Methoden, Approximationen, FPT-Algorithmen (parametrisiert) und Problem-spezifischen Strukturen, die in der Praxis genutzt werden. - Theoretische Erkenntnisse beeinflussen Lösungsansätze, Bewertung von Algorithmen und Verständnis von Komplexität in der Informatik.