Probeklausur

Baustoffe und Bauchemie I

Universität: Technische Universität Berlin Kurs/Modul: Baustoffe und Bauchemie I

Bearbeitungszeit: 180 Minuten Erstellungsdatum: September 20, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Baustoffe und Bauchemie I

Aufgabe 1.

- (a) Definieren Sie die Begriffe Baustoff, Bindemittel und Gesteinskörnung im Kontext von Bauwesen. Geben Sie zu jedem Begriff ein kurzes, klares Beispiel an.
- (b) Nennen Sie drei typische mineralische Baustoffgruppen und je ein Beispiel sowie eine gängige Einsatzmöglichkeit. Beschreiben Sie kurz, welche Eigenschaften für die jeweilige Gruppe typisch sind.
- (c) Unterscheiden Sie grob zwischen Gestein und Gesteinskörnung. Welche Kriterien sind bei der Auswahl von Gesteinskörnungen für Beton maßgeblich (z. B. Härte, Korngröße, Porosität)? Geben Sie jeweils ein konkretes Beispiel an.
- (d) Welche Rolle spielt die Nachhaltigkeit in der Wahl von Baustoffen? Skizzieren Sie zwei zentrale Aspekte, die bei der Bewertung von Baustoffsystemen berücksichtigt werden.

Aufgabe 2.

- (a) Beschreiben Sie grob den Aufbau von Zement gemäß dem Herstellungsweg. Nennen Sie drei Haupttypen von Zement und eine typische Anwendung.
- (b) Welche Eigenschaften sind für Beton als Mischsystem charakteristisch? Nennen Sie mindestens drei wichtige Kenngrößen und erläutern Sie deren Bedeutung.
- (c) Erklären Sie den Zusammenhang zwischen Wasser-Zement-Zahl und Festigkeitsentwicklung von Beton. Geben Sie eine einfache, qualitative Skizze der typischen Festigkeitsentwicklung über die Zeit an.
- (d) Diskutieren Sie kurz die Auswirkungen unterschiedlicher Zementarten auf die Umweltbilanz von Betonbaustellen (ohne Lösungsvorschläge). Welche Strategien zur Reduktion des Zementbedarfs sind gängig?

Aufgabe 3.

- (a) Beschreiben Sie zwei primäre Mörtelsysteme für Mauern (Mauermörtel und Putze). Welche Bindemittelformen kommen typischerweise zum Einsatz, und welche Zusatzstoffe verbessern Eigenschaften wie Dauerhaftigkeit oder Verarbeitung?
- (b) Erläutern Sie die Unterschiede zwischen Estricharten hinsichtlich Aufbau, Einsatzgebiet und typischer Körnung bzw. Bindemittel. Nennen Sie je ein Beispiel für einen Leicht- und einen Schwerestrich.
- (c) Welche Prüfkriterien legen Sie an, um die Qualität von Mörtel bzw. Estrich in der Praxis sicherzustellen? Erwähnen Sie mindestens zwei prüfende Kenngrößen oder Verfahren.
- (d) Diskutieren Sie kurz, wie Wandbaustoffe und Mauerwerk in Bezug auf Tragfähigkeit und Wärmeschutz zusammenwirken. Welche Rolle spielen Wandaufbau und Dämmung?

Aufgabe 4.

- (a) Geben Sie einen Überblick über gängige Dämmstoffe (mineralisch, organisch, metallisch) und ordnen Sie diese nach grundlegenden Eigenschaften wie Wärmeleitfähigkeit, Brandschutz und Schichtdicken.
- (b) Welche Kriterien sind bei der Wahl von Dämmstoffen für Außenwände maßgeblich? Diskutieren Sie einfache Szenarien zur Balance von Wärmeverlust, Brandschutz und Kosten.
- (c) Diskutieren Sie den Einfluss von Holz und Holzwerkstoffen auf Tragwerk und Innenausbau im Kontext von Baustoffkategorie und Umweltaspekten. Welche Vor- und Begrenzungen ergeben sich?
- (d) Fassen Sie in kurzen Stichpunkten die zentralen Sustainability-Aspekte zusammen, die bei der Planung mineralischer Baustoffe eine Rolle spielen. Welche Rolle spielen Recycling und Lebenszyklusbetrachtungen?

Lösungen

Lösung zu Aufgabe 1.

- (a) Baustoff, Bindemittel und Gesteinskörnung im Kontext von Bauwesen.
 - Baustoff: Ein Baustoff ist ein Werkstoff bzw. eine Stoffgruppe, der/die im Bauwesen zur Herstellung von Bauteilen, Strukturen und Bauwerken verwendet wird. Beispiel: Mörtel, Beton, Ziegel, Naturstein.
 - Bindemittel: Ein Bindemittel ist ein Stoff, der durch chemische oder physikalische Prozesse eine homogene Masse zwischen Zuschlagsstoffen erzeugt und so Festigkeit und Formgebung ermöglicht. Beispiel: Zement (Portlandzement), Kalk, Bitumen.
 - Gesteinskörnung: Gesteinskörnung sind grob- bis feinzerkleinerte Gesteinsmaterialien, die als Zuschlagstoff in Pasten/Mörteln bzw. Beton eingesetzt werden. Beispiel: Basalt als grobe Zuschlagsfraktion, Quarzsand als feine Fraktion.
- (b) Drei typische mineralische Baustoffgruppen, je ein Beispiel sowie eine gängige Einsatzmöglichkeit. Typische Eigenschaften werden kurz benannt.
 - Zementgebundene Baustoffe Beispiel: Beton, Mörtel. Einsatz: Trag- und Verkleidungskonstruktionen in Gebäuden. Typische Eigenschaften: Hohe Druckfestigkeit, relativ hohe Dichte, gute Verbundfähigkeit, aber Wärmeentwicklung je nach Hydratationsgrad.
 - Kalkgebundene Baustoffe Beispiel: Kalksandstein, Kalkputze. Einsatz: Mauerwerk, tragende Wände, historische Bausubstanz. Typische Eigenschaften: Diffusionsoffen, guten Oberflächenzustand, weniger hohe Festigkeiten als Zementbaustoffe, oft gute Pufferung gegen Feuchte.
 - Gipsbasierte Baustoffe Beispiel: Gipsputz, Gipskartonplatten. Einsatz: Innenausbau, Trennwände, Trockenbau. Typische Eigenschaften: Hohe Formbarkeit, geringe Festigkeiten, gute Brandschutzeigenschaften im Verbund, empfindlich gegenüber Feuchte.
- (c) Unterscheiden Sie grob zwischen Gestein und Gesteinskörnung. Welche Kriterien sind bei der Auswahl von Gesteinskörnungen für Beton maßgeblich (z. B. Härte, Korngröße, Porosität)? Geben Sie jeweils ein konkretes Beispiel an.
 - Gestein ist der ursprüngliche Naturstoff in seiner geologischen Form (festes Rohmaterial aus dem Erdkrustenbereich), aus dem Gesteinskörnungen gewonnen werden.
 - **Gesteinskörnung** sind die zerkleinerten Bruchstücke (Körnungen), die in Beton/Mörtel als Zuschlagstoffe verwendet werden.
 - Maßgebliche Kriterien:
 - Härte/Abriebfestigkeit: Widerstand gegen Verschleiß und mechanische Beanspruchung
 (z. B. Basalt als harte, abrasionsbeständige Körnung).
 - Korngröße/Verteilungsgrad: Eignung der Körnung für die gewünschte Betongröße (z. B. grob 8/16 mm bis 20 mm für Fein-/Mittelbetone; ausreichende Abstufung zur guten Verdichtung).

- Porosität/ Wasseraufnahme: Einfluss auf das Wasser-/Porenverhalten des Betons; geringere Porosität reduziert Wasseraufnahme und Diffusion.
- Chemische Stabilität/ Reaktionsneigung: Vermeidung von Alkali-Silika-Reaktion, Entstehung deleter Deponierung (z. B. dicht gemahlene Silikatgesteine vermeiden risikoreiche Verbindungen).

• Beispiele:

- Basalt: hohe Härte, geringe Porosität; geeignet für belastete Bauteile.
- Kalkstein (Mergel-/Kalksteinauflage): moderat hart, tendenziell höherer Porosität; ggf. Vorsicht bei Alkali-Reaktionen.
- (d) Welche Rolle spielt die Nachhaltigkeit in der Wahl von Baustoffen? Skizzieren Sie zwei zentrale Aspekte, die bei der Bewertung von Baustoffsystemen berücksichtigt werden.
 - Ganzheitliche Ökobilanz (LCA) und Embodied Energy/CO₂-Footprint: Energie- und Emissionsaufwand von Rohstoffgewinnung, Verarbeitung, Transport und End-of-Life.
 - Ressourceneffizienz und Lebenszyklus: Haltbarkeit, Witterungsbeständigkeit, Reparaturund Recyclingmöglichkeiten, Wiederverwendung von Komponenten, Rezyklierbarkeit von Gesteinskörnungen und Bindemittelresten.

Lösung zu Aufgabe 2.

- (a) Beschreiben Sie grob den Aufbau von Zement gemäß dem Herstellungsweg. Nennen Sie drei Haupttypen von Zement und eine typische Anwendung.
 - Aufbau/Herstellungsweg: Zement entsteht durch Trocknen und Mahlen der Rohmaterialien (Kalkstein, Ton, ggf. geringe Mengen anderer Minorien) zu Rohmehl, deren Brennen in Drehofen bei ca. 1400–1450 °C zum Klinker erfolgt. Der Klinker wird mit einem geringen Anteil Gips (als Verzögerer) zerkleinert und zu Zement gemahlen. Die chemische Reaktion beim Wasserzugabe führt zur Hydratation und Festigkeitsentwicklung des Zements.
 - Drei Haupttypen:
 - 1. Portlandzement Typ I (Normalzement): Allgemeine Anwendung in Normalbetonen und Mörteln.
 - 2. Portlandzement Typ II (beschränkte Wärmeentwicklung/Sulfatbeständigkeit): Geringere Hydratationswärme; geeignet für massige Bauteile und Anwendungen mit moderater Sulfatbelastung.
 - 3. Portlandzement Typ III (hohe Frühfestigkeit): Schnellabbindung und frühe Festigkeitsentwicklung; vorteilhaft bei Vorfertigung, Schnellbaustellen oder Kältebedingungen.
 - Typische Anwendung: Typ I allgemeiner Hochbau; Typ II Wärmedehnung/Schäden in Massivbau; Typ III schnell verfügbare Festigkeit z. B. Brückenfertigteile oder Schnellbaukonstruktionen.
- (b) Welche Eigenschaften sind für Beton als Mischsystem charakteristisch? Nennen Sie mindestens drei wichtige Kenngrößen und erläutern Sie deren Bedeutung.
 - Verarbeitbarkeit (Arbeitsfähigkeit): Beeinflusst durch das Wasser/Zement-Verhältnis (W/Z), Zusatzmittel und Zuschläge; bestimmt die Verdichtung und Oberflächenqualität.
 - Druckfestigkeit (28 Tage): Maß für die Tragfähigkeit des Betons unter Druckbelastung; maßgeblich für Bemessungen der Tragkonstruktion.
 - Porenvolumen/ Dichte bzw. Wasseraufnahme: Beeinflusst Dauerhaftigkeit, Diffusionsverhalten, Frost-/Schäden und chemische Beständigkeit.
 - Wasser-Zement-Verhältnis (W/Z): Einfluss auf Porenstruktur, Festigkeit und Dauerhaftigkeit; je niedriger W/Z, desto höher potenzielle Druckfestigkeit, aber geringere Verarbeitbarkeit.
- (c) Erklären Sie den Zusammenhang zwischen Wasser-Zement-Zahl und Festigkeitsentwicklung von Beton. Geben Sie eine einfache, qualitative Skizze der typischen Festigkeitsentwicklung über die Zeit an.
 - Zusammenhang: Eine niedrigere W/Z-Zahl führt zu geringerer Porosität und damit zu einer höheren Endfestigkeit; eine höhere W/Z-Zahl erhöht die Porosität, senkt die maximale Festigkeit ab und verzögert die Festigkeitsentwicklung. Dagegen steigt die Anfangsfestigkeit bei erhöhtem Hydratationsgrad tendenziell langsamer, aber insgesamt langsamer Aufbau mit zu viel Poren.

- Qualitative Skizze (vereinfachend):
 - S(t) steigt schnell in den ersten Tagen (t < 7-14 Tage), dann verlangsamt sich der Anstieg; bei geringem W/Z liegt S(t) höher als bei hohem W/Z für alle t 1 Tag.
- (d) Diskutieren Sie kurz die Auswirkungen unterschiedlicher Zementarten auf die Umweltbilanz von Betonbaustellen (ohne Lösungsvorschläge). Welche Strategien zur Reduktion des Zementbedarfs sind gängig?
 - Auswirkungen unterschiedlicher Zementarten auf Umweltbilanz:
 - Normalzement (Typ I): Höherer Klinkeranteil, dadurch tendenziell größerer CO₂-Ausstoß pro Tonne Zement.
 - **Typ II**: Oft geringerer Hydratationswärme- und CO₂-Faktor bei vergleichbarer Qualität; potenziell bessere Umweltbilanz je nach Einsatzfall.
 - Typ III: Frühfestigkeit, aber in der Regel höheren Energieaufwand pro Tonne Zement aufgrund der schnelleren Hydratation und möglicher Zusatzprozesse; Umweltbilanz hängt stark vom Anwendungsfall ab.
 - Strategien zur Reduktion des Zementbedarfs:
 - Einsatz von Zusatzstoffen (SCMs) wie Flugasche, Hochofenschlacken, Silikastaub oder natural pozzolanic materials zur Teilersatzung von Zementklinker.
 - Einsatz von Blendsystemen (Portland-komposit-Zemente) mit reduzierem Klinkeranteil.
 - Verwendung von kalk- oder kalkanreichernden Mörteln bzw. Zuschlägen, die den Bindemittelbedarf senken.
 - Optimierte Mischungen und Vorfertigung zur Reduktion von Verschnittverlusten sowie effizienter Materialverbrauch.

Lösung zu Aufgabe 3.

(a) Beschreiben Sie zwei primäre Mörtelsysteme für Mauern (Mauermörtel und Putze). Welche Bindemittelformen kommen typischerweise zum Einsatz, und welche Zusatzstoffe verbessern Eigenschaften wie Dauerhaftigkeit oder Verarbeitung?

• Mauermörtel:

- Bindemittelvarianten:

- * **Zementmörtel** (Zement+Sand): hohe Festigkeit, gute Haftung; verwendet bei feuchten oder dichten Bauteilen.
- * Kalkmörtel (Kalk+Sand): diffusionsoffen, gut für ältere oder dampfende Baustrukturen.
- * Kalk-Zement-Mörtel (Kalk + Zement + Sand): Mischform, kombiniert Vorteile beider Systeme.
- Zusatzstoffe: Fließmittel (Verarbeitung), Verarbeitungsverzögerer oder -beschleuniger (Zeitsteuerung), Luftporenbildner (Rissvermeidung, Frostschutz), Additive zur Eindämmung der Rissbildung.

• Putze:

- Bindemittelvarianten: Kalkputz, Kalkzementputz, Gipsputz (innen), wobei Kalkputz häufig für Außenbereiche verwendet wird.
- Zusatzstoffe: Hydraulische Zusatzstoffe (z. B. Gips- oder Zementzusatz) verbessern Festigkeit und Witterungsbeständigkeit; Haftvermittler (Kleber für Putz), Dämmstoffe in Putzträgern.
- (b) Erläutern Sie die Unterschiede zwischen Estricharten hinsichtlich Aufbau, Einsatzgebiet und typischer Körnung bzw. Bindemittel. Nennen Sie je ein Beispiel für einen Leicht- und einen Schwerestrich.

• Aufbau und Einsatzgebiet:

- Zementestrich: Aufbau meist aus Zementmörtel oder Zement mit Zuschlägen; eingesetzt als deckende Schicht auf Untergrund, in Feuchtebeanspruchung geeignet.
- Anhydrit-/Calciumsulfat-Estrich: Bindemittel Calciumsulfat; geringe Härte, schnelle Festigkeitsentwicklung, Innenbereiche.
- Leichtestrich: Estrich mit Leichtzuschlägen (z. B. Blähton, Blähperlite); geringes Gewicht, gute Dämmwirkung.
- Schwimmender Estrich: Schall- und Wärmeschutz; oft auf Dämmunterlage.

• Körnung und Bindemittel:

- Schwerestrich: typischerweise Zement-Betonmörtel mit grobem Zuschlag; Körnung ca. 0–16 mm (oder 0–8 mm). Hohe Masse, gute Festigkeit.
- Leichtestrich: Zuschlag z. B. Blähton/Luftgehärtetes Kornmaterial; Körnung typischerweise 0-32 mm je nach System, aber reduziertes Packmaß und geringes Gewicht.

• Beispiele:

- Leichtestrich: Zementestrich mit Blähton (Leichtbeton) für Deckenkonstruktionen mit geringer Aufbaulast.
- Schwerestrich: Zementestrich mit Sand/Steinsplits (klassischer Bodenausgleich) für Belastungen im Verkehrsbereich.
- (c) Welche Prüfkriterien legen Sie an, um die Qualität von Mörtel bzw. Estrich in der Praxis sicherzustellen? Erwähnen Sie mindestens zwei prüfende Kenngrößen oder Verfahren.
 - Druckfestigkeit bzw. Festigkeitsentwicklung: Nach EN-Standards (z. B. Druckfestigkeit nach 28 Tagen für Mörtel/ Estrich) zur Beurteilung der Tragfähigkeit und Langzeitstabilität.
 - Verarbeitbarkeit/Konsistenz: Messung der Fließfähigkeit bzw. Konsistenz (z. B. DIN EN 1015-3), um eine gute Verdichtung und Oberflächenqualität sicherzustellen.
 - Wasseraufnahme/Porengehalt: Bestimmung der Porosität oder der Saugfähigkeit (Kapillarporen); Einfluss auf Dauerhaftigkeit und Feuchteverhalten.
 - Rissverhalten/Schwindschwankungen: Beobachtung von Verzug und Rissbildung unter Last-/Trocknungsbedingungen.
- (d) Diskutieren Sie kurz, wie Wandbaustoffe und Mauerwerk in Bezug auf Tragfähigkeit und Wärmeschutz zusammenwirken. Welche Rolle spielen Wandaufbau und Dämmung?
 - Tragwerk: Wandbaustoffe übernehmen Lasten und tragen Tragstrukturen. Die erzeugten Druck- und Zugspannungen bestimmen die Auswahl der Wandart (Massivbau, leichtere Systeme, Mauerwerkstypen).
 - Wärmeschutz: Wandaufbau beeinflusst die Gesamtheizlast; Dämmung reduziert Wärmeverluste, erhöht die thermische Trägheit und beeinflusst das Feuchte- und Kondensationsverhalten.
 - Rolle der Dämmung: Durch die Kombination aus tragendem Wandmaterial und Dämmung wird die Balance zwischen Tragfähigkeit, Wärmeleitfähigkeit (U-Wert), Brandschutz und Feuchteverträglichkeit erreicht. Eine schlecht gedämmte Außenwand kann zu erhöhtem Energiebedarf führen, während eine hochdämmende Wand den Bauschuttdruck erhöht oder andere Anforderungen beeinflusst.

Lösung zu Aufgabe 4.

- (a) Uberblick über gängige Dämmstoffe (mineralisch, organisch, metallisch) und Ordnung nach Grundlage (Wärmeleitfähigkeit, Brandschutz, Schichtdicken).
 - Mineralische Dämmstoffe: z. B. Steinwolle (Rockwool), Glaswolle. Typische Wärmeleitfähigkeit λ ca. 0,032–0,040 W/(m·K); gute Brandswärmebeständigkeit (Brandklasse A1 bis A2-s1d0 je nach System); Schichtdicken je nach Anforderungen (ca. 40–200 mm).
 - Organische Dämmstoffe: z. B. Polystyrol (EPS), extrudiertes Polystyrol (XPS), Polyurethan (PUR). λ ca. 0,030–0,038 W/(m·K); moderate Brandschutzperformance (je nach Zusatzstoffen unterschiedlich); tendenziell geringe Diffusionsfähigkeit, Feuchteempfindlichkeit je nach System.
 - Metallische Dämmstoffe: z. B. reflektierende Metallfolien oder Metallplatten (in Kombination mit Luftschichten). λ je nach Aufbau geringfügig, aber vor allem Diffusions- und Reflexionswirkung als zentrale Eigenschaften; meist als Zusatzschicht in Kombinationssystemen genutzt.
- (b) Welche Kriterien sind bei der Wahl von Dämmstoffen für Außenwände maßgeblich? Diskutieren Sie einfache Szenarien zur Balance von Wärmeverlust, Brandschutz und Kosten.
 - Wärmedämmung: niedriger Wärmeleitwert (λ) und geeignete Dicke, um den geforderten U-Wert zu erreichen.
 - Brandschutz: ausreichende Feuerwiderstandsklasse (z. B. A1/A2 beim Mineralwolle-System); mineralische Dämmstoffe bevorzugt bei hohen Anforderungen.
 - Kosten und Verfügbarkeit: Material- und Installationskosten, Transport, Verarbeitung, Lebenszykluskosten.
 - Feuchte- und Diffusionsverhalten: Feuchteausgleich, Diffusionsfähigkeit, Dampfbremse; Interstitielle Kondensation beachten.
 - Nachhaltigkeit Umwelt: Rohstoffverfügbarkeit, Recyclingfähigkeit, Emissionen während Produktion.

Beispiele für einfache Szenarien

- Kälteklima, hohes Brandrisiko: Mineralwolle-Dämmung in Kombination mit mineralischem Putzsystem; dicke >100 mm, um U-Wert-Anforderungen zu erfüllen.
- Budgetorientierte Wohnhäuser in gemäßigtem Klima: EPS-Platten, kostengünstig, genügende Brandsicherheit durch Zusatzschichten; Komposit-Systeme mit Feuchtekomfort.
- (c) Diskutieren Sie den Einfluss von Holz und Holzwerkstoffen auf Tragwerk und Innenausbau im Kontext von Baustoffkategorie und Umweltaspekten. Welche Vor- und Begrenzungen ergeben sich?
 - Vorteile:

- Geringes Eigengewicht, gute Verarbeitbarkeit, kurze Bauzeiten.
- Nachwachsender Rohstoff; CO₂-Speicherung im Holzgewebe; potenziell gute Wärmeund Schallschutzwerte bei entsprechender Ausführung.
- Recycelbarkeit und Einsatz in kohlenstoffarmen Bauweisen.

• Begrenzungen:

- Empfindlichkeit gegenüber Feuchtigkeit und Schädlingen; Brandschutzanforderungen je nach Gebäudetyp.
- Langfristige Stabilität abhängig von konstruktiver Feuchteführung; Instandhaltungskosten können höher sein.
- Verfügbarkeit von Holzwerkstoffen und Umweltzertifizierungen (z. B. FSC/PEFC) beeinflussen die Umweltbilanz.
- (d) Fassen Sie in kurzen Stichpunkten die zentralen Sustainability-Aspekte zusammen, die bei der Planung mineralischer Baustoffe eine Rolle spielen. Welche Rolle spielen Recycling und Lebenszyklusbetrachtungen?
 - Ressourcen- und Energieeffizienz: Minimierung des Zementeinsatzes, Einsatz von SCMs, Verwendung recycelter Zuschläge.
 - Kohlenstoffbilanz: Embodied Carbon, Möglichkeiten zur Reduktion über Baustoffwahl, Prozessoptimierung und End-of-Life.
 - Lebenszyklusbetrachtung (LCA): Ganzheitliche Bewertung von Rohstoffen, Produktion, Transport, Nutzung, Instandhaltung und Rückbau; Entscheidungsgrundlage für nachhaltige Bauweisen.
 - Recycling und Kreislaufwirtschaft: Wiederverwendung von Materialien, Recycling von Zuschlägen oder die Rückführung in den Stoffkreislauf; Reduktion von Abfall.