Probeklausur

Energie und Ressourcen - Einführung

Universität: Technische Universität Berlin

Kurs/Modul: Energie und Ressourcen - Einführung

Bearbeitungszeit: 90 Minuten

Erstellungsdatum: September 20, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Energie und Ressourcen - Einführung

Aufgabe 1.

- (a) Definieren Sie die Begriffe Primärenergie und Endenergie und erläutern Sie deren zentrale Unterschiede.
- (b) Nennen Sie drei relevante Energie- bzw. Rohstoffquellen, die für Deutschland eine Rolle spielen, und beschreiben Sie deren zentrale Förder- bzw. Gewinnungsprozesse sowie Umweltaspekte.
- (c) Beschreiben Sie in kurzen Schritten den Energiefluss vom Primärrohstoff bis zur Endverwendung in einem typischen Energiesystem.
- (d) Gegeben sei eine Anlage mit Wirkungsgrad $\eta=0.42$. Wenn der Primärenergieinput 1000 MJ beträgt, berechnen Sie die erzeugte Endenergie $E_{\rm End}$. Geben Sie zusätzlich den Energieverlust $E_{\rm Verlust}=E_{\rm Prim}-E_{\rm End}$ an.

Aufgabe 2.

- (a) Beschreiben Sie die drei wesentlichen Phasen der Ressourcenförderung: Exploration und Reservenabschätzung, Gewinnung/Förderung, sowie Verarbeitung und Transport. Gehen Sie jeweils auf technische Kernprozesse und Umweltaspekte ein.
- (b) Erklären Sie den Unterschied zwischen konventioneller Energieumwandlung und erneuerbarer Energieumwandlung hinsichtlich der Eingriffsintensität in die Umwelt, der Planungs- und Ausbauzeiten sowie der Speicherkonzeption.
- (c) Skizzieren Sie in Stichpunkten den typischen Energiefluss in einem integrierten Energiesystem von der Primärquelle bis zum Endkunden.
- (d) Formulieren Sie die Definition des Energie-Ratio-Kennwertes EROI (Energy Return on Investment) und erläutern Sie, welche Informationen er über ein Energiesystem liefert.

Aufgabe 3.

- (a) Ein Kraftwerk wandelt Primärenergie in Endenergie um. Die Anlage besitzt einen Wirkungsgrad $\eta=0.38$. Wenn die Primärenergie
inputmenge 420 TJ beträgt, bestimmen Sie die erzeugte Endenergie $E_{\rm End}$ und den daraus resultierenden Energie
verlust.
- (b) Diskutieren Sie drei zentrale Unterschiede zwischen konventioneller und erneuerbarer Energiewandlung im Hinblick auf Verfügbarkeit, Fluktuation der Erzeugung und Speicherbedarf.
- (c) Nennen Sie zwei Umweltaspekte, die bei der Bewertung von Energie- und Ressourcenprojekten besonders berücksichtigt werden; erläutern Sie, wie sie gemessene Größen beeinflussen können.

Aufgabe 4.

- (a) Eine regionale Endkundensituation sieht vor, dass $60\,\%$ des Bedarfs durch erneuerbare Erzeugung gedeckt wird. Nennen Sie drei Maßnahmen, mit denen Netzstabilität und Versorgungssicherheit trotz hoher fluktuierender Anteile verbessert werden können, und erläutern Sie kurz deren Wirkprinzip.
- (b) Geben Sie drei Kriterien an, anhand derer eine nachhaltige Energieversorgung bewertet werden kann (z. B. Umwelt, Wirtschaft, Soziales) und begründen Sie kurz die Relevanz jedes Kriteriums.
- (c) Diskutieren Sie zwei Hindernisse, die der breiten Einführung von Energiesystemen auf Basis erneuerbarer Ressourcen in Deutschland entgegenstehen, und schlagen Sie mögliche Lösungsansätze vor.

Lösungen

Aufgabe 1.

(a) Lösung: Primärenergie ist die in der Natur vorliegende Energie bzw. der Energieinhalt eines Energieträgers, bevor eine Umwandlung oder Verarbeitung erfolgt. Dazu zählen fossile Rohstoffe (Kohle, Öl, Erdgas), Uran, Wasserkraft, Wind, Sonnenstrahlung, Biomasse, Geothermie etc. Endenergie ist die Energie, die dem Endverbraucher in nutzbarer Form zur Verfügung steht, nachdem Primärenergie transformiert, transportiert und ggf. gespeichert wurde (Elektrizität, Wärme, Kraftstoffe, mechanische Energie).

Zentrale Unterschiede:

- Stufen der Energiegewinnung: Primärenergie liegt vor Umwandlung vor; Endenergie ist die nutzbare Energieform am Verbraucherort.
- Verluste: Bei Umwandlung, Transport, Speicherung fallen Verluste an; Endenergie <= Primärenergie.
- Vergleichsgrößen: Primärenergie bewertet den Gesamtenergieinhalt in der Wertschöpfungskette; Endenergie fokussiert auf die tatsächlich genutzte Energie beim Endverbraucher.
- Energiemessung: Primärenergie bezieht sich auf den Energieinhalt der Rohstoffe bzw. Primärquellen; Endenergie auf die nutzbare Energieform (Elektrizität, Wärme, Kraftstoff).
- (b) Lösung: Drei relevante Energie- bzw. Rohstoffquellen in Deutschland mit zentralen Förderungsprozessen und Umweltaspekten:
 - Erdgas (Gas): Gewinnung aus Felden (onshore/offshore, z. B. Nordsee), Bohrungen, Förderanlagen, Gasaufbereitung, Transport durch Pipelines. Umweltaspekte: Methanleckagen und -emissionen, geringe Wasserverbrauchsintensität im Vergleich zu Öl/Grubenarbeiten, potenzielle Grundwasser- und Landnutzungsfolgen in Anrainergebieten.
 - Braunkohle (Tagebau): Abbau durch Tagebau (offener Abraum), Förderung über Förderbänder, Aufbereitung und Transport zum Kraftwerk. Umweltaspekte: erhebliche Flächeninanspruchnahme, Eingriffe in Boden, Wasserhaushalt (Grundwasserabsenkung), Emissionen (CO, Staub, NOx) sowie komplexe Rekultivierungsanforderungen.
 - Erdöl (Rohöl): Gewinnung durch Tief- oder Oberflächenbohrungen, Ölgewinnung, Transport und Weiterverarbeitung/refining. Umweltaspekte: Ölaustritte/Spillrisiken, Bodenund Grundwasserbelastungen, Ölverarbeitungslasten, Emissionen während Förderung und Transport.
- (c) Lösung: Typischer Energiefluss vom Primärrohstoff bis zur Endverwendung (in kurzen Schritten):
 - 1. Primärenergiequelle (z. B. Braunkohle, Öl, Erdgas, erneuerbare Quellen) enthält den Energieinhalt vor Umwandlung.
 - 2. Gewinnung/Förderung und Aufbereitung bereiten die Energie weiter auf; ggf. Zwischenprodukte (Wärme, Druck, chemische Zwischenformen) entstehen.
 - 3. Energieumwandlung in Erzeugungseinheiten (Kraftwerke, Raffinerien, Werksprozesse) mit spezifischen Wirkungsgraden.

- 4. Transport und Verteilung (Netze, Pipelines, Transportwege) verursachen weitere Verluste.
- 5. Endenergie in nutzerfreundlicher Form (Elektrizität, Wärme, Kraftstoffe) erreicht Endverbraucher.
- 6. Verluste bleiben in jeder Stufe bestehen (Umwandlungs-, Übertragungs-, Lagerverluste).
- (d) Lösung: Gegeben sei ein Wirkungsgrad $\eta=0.42$ und eine Primärenergieinputmenge $E_{\rm Prim}=1000~{\rm MJ}.$

 $E_{\rm End} = \eta \, E_{\rm Prim} = 0.42 \times 1000 \, \text{MJ} = 420 \, \text{MJ}, \quad E_{\rm Verlust} = E_{\rm Prim} - E_{\rm End} = 1000 - 420 = 580 \, \text{MJ}.$

Aufgabe 2.

(a) Lösung:

- Exploration und Reservenabschätzung: Geophysikalische Erkundung (Seismik, Magnetotellik), Bohrungen, Bohrkernanalysen; Reservewürdigkeitskalkulation mit probabilistischen Methoden; Umweltbaseline und ökologische Untersuchungen. Umweltaspekte: Flächeninanspruchnahme, Störung von Lebensräumen, Wasserhaushalt, Emissionen aus Bohrarbeiten.
- Gewinnung/Förderung: Technik: Bohrungen, Förderpumpen, Bergbau-/Fördertechnik (offener Abbau bei Kohle, Bohrungen bei Öl/Gas); Gas-/Öltransportinfrastruktur; ggf. Aufbereitung. Umweltaspekte: Landnutzung, Staub, Lärm, Wasserverbrauch, Leckagen, Emissionen, Abfall-/Tailings-Management.
- Verarbeitung und Transport: Aufbereitung, Veredelung, Raffination oder Veredlung von Erz/Öl; Transport der Endprodukte (Pipelines, Rail, Seefracht); Weiterverteilung an Netze bzw. Verbraucher. Umweltaspekte: Energieintensive Prozesse, Abwasser, Emissionen, Gefahrstoff- und Spetalbeiten.

(b) Lösung: Unterschied konventioneller vs. erneuerbarer Energieumwandlung

- Eingriffsintensität in die Umwelt: Konventionelle Systeme erfordern oft invasive Rohstoffgewinnung (Tagebau, Bohrungen) und Verarbeitung, was direkte lokale Umweltveränderungen verursacht. Erneuerbare Systeme zeigen in der Errichtung oftmals Landnutzungsbzw. Habitatveränderungen, erzeugen jedoch in der Betriebsphase in der Regel weniger direkte Emissionen vor Ort (außer z. B. Länderabhängigkeiten bei Wind/Blitz- oder Landnutzung).
- Planungs- und Ausbauzeiten: Konventionelle Anlagen (z. B. Großkraftwerke) benötigen zumeist lange Genehmigungswege, große Vorlaufzeiten und umfangreiche Umweltprüfungen. Erneuerbare Technologien, insbesondere Solar- und Windanlagen, lassen sich tendenziell schneller planen und umsetzen, benötigen aber zunehmend Netz- und Genehmigungsmanagement.
- Speicherkonzeption: Konventionelle Energiesysteme speichern vorwiegend Energie in Form von Brennstoffen (Kohle, Öl, Erdgas) oder nutzen flexible, bereits vorhandene Kraftwerke; erneuerbare Systeme erfordern ergänzende Speicherkonzepte (Pumpspeicher, Batteriespeicher, Wasserstoff/Synthetikkraftstoffe) oder starke Netzintegration, um Variabilität auszugleichen.
- (c) Lösung: Typischer Energiefluss in einem integrierten Energiesystem (Schlüsselstufen in Stichpunkten)
 - Primärquelle (z. B. Ressourcen aus Fossil- oder erneuerbaren Sektoren)
 - Energieumwandlungs- bzw. Erzeugungseinheiten (Kraftwerke, Raffinerien, Wärmeerzeuger)
 - Übertragung/Verteilung (Netzsystem, Pipelines, Verteilungsnetze)
 - Endenergieformen (Elektrizität, Wärme, Kraftstoffe) für Endverbraucher

- Begleitende Speicher- und Regelungsinfrastrukturen (Speicher, Netzstabilität, Regelenergie)
- (d) Lösung: Definition und Aussagewert des EROI

$$EROI = \frac{E_{Aus}}{E_{In}},$$

wobei E_{Aus} die nutzbare Energie ist, die aus dem Energiesystem gewonnen wird, und E_{In} die Energie bezeichnet, die in Exploration, Förderung, Verarbeitung, Transport und Bereitstellung investiert wird. Interpretation: Ein höherer EROI bedeutet, dass relativ weniger Energie in die Beschaffung und Aufbereitung investiert wird, um eine bestimmte Energiemenge bereitzustellen; damit stehen mehr Nettoenergie für gesellschaftliche Nutzungen (Wirtschaft, Infrastruktur, Lebenshaltung) zur Verfügung. Niedrigere EROI-Werte bedeuten größere Energieintensität der Bereitstellung und können volkswirtschaftlich belastender wirken.

Aufgabe 3.

(a) Lösung: Wirkungsgrad $\eta = 0.38$, Primärenergieinput $E_{\text{Prim}} = 420 \text{ TJ}$.

$$E_{\rm End} = \eta \, E_{\rm Prim} = 0.38 \times 420 \, {\rm TJ} = 159.6 \, {\rm TJ}, \quad E_{\rm Verlust} = E_{\rm Prim} - E_{\rm End} = 420 - 159.6 = 260.4 \, {\rm TJ}.$$

- (b) Lösung: Drei zentrale Unterschiede zwischen konventioneller und renewabler Energiewandlung
 - Verfügbarkeit: Konventionelle Systeme liefern in der Regel eine kontinuierliche Grundlast (je nach Brennstoff- und Auslastung); erneuerbare Systeme sind wetter-/tageszeitabhängig und weisen eine stärkere Fluktuation auf.
 - Fluktuation der Erzeugung: Konventionelle Energiequellen lassen sich relativ gut regeln (Dispatchbarkeit); erneuerbare Quellen benötigen mit Speicher- und Netzmechanismen Ausgleichmaßnahmen.
 - Speicherbedarf: Konventionelle Systeme speichern primär Brennstoffe (Lagerung); erneuerbare Systeme benötigen zusätzliche Speicher- bzw. Flexibilitätslösungen (Batterien, Pumpspeicher, Power-to-X-Lösungen).
- (c) Lösung: Zwei Umweltaspekte, die bei der Bewertung von Energie- und Ressourcenprojekten besonders berücksichtigt werden; Erläuterung, wie sie gemessene Größen beeinflussen
 - Treibhausgasemissionen und Luftschadstoffe (COeq, NOx, SOx): Beeinflusst Lebenszyklus-CO-Fußabdruck je erzeugter Endenergie; gemessen als g COeq/kWh oder t COeq/Jouleingang; beeinflusst Standort- und Betriebsentscheidungen.
 - Flächenbedarf und Biodiversität: Landnutzung pro installierter Leistung (ha/MW), Eingriffe in Ökosysteme, Habitatverlust; beeinflusst Indikatoren wie Flächenverbrauch, Artenschutzkennzahlen, Biodiversitätsindikatoren.

Aufgabe 4.

- (a) Lösung: Drei Maßnahmen zur Verbesserung von Netzzustand und Versorgungssicherheit bei einem Anteil von 60% erneuerbarer Erzeugung:
 - Energiespeicher (Großspeicher, Batteriespeicher, Pumpspeicherwerke) zur kurzfristigen Glättung von Leistungsschwankungen und zur Bereitstellung von Regelenergie.
 - Nachfragesteuerung (Demand Response) zur Absenkung oder Verschiebung von Lastspitzen, wodurch Netze stabilisiert und Synchronisation erleichtert wird.
 - Netzausbau und grenzüberschreitende Interkonnektionen sowie Einsatz flexibler Erzeugung (Backup-Gaskraftwerke, flexible Wasserkraft) zur verbesserten Diffusion von Last-/Erzeugungsungleichgewichten.
- (b) Lösung: Drei Kriterien zur Bewertung einer nachhaltigen Energieversorgung (jeweils Begründung)
 - *Umwelt/Ökologie* (Emissionsreduktion, Biodiversität, Ressourcenschonung): Relevanz: langfristige Umweltverträglichkeit und Schutz der Ökosysteme.
 - Wirtschaftlichkeit (Kostenstrukturen, Versorgungssicherheit, Beschäftigung): Relevanz: wirtschaftliche Tragfähigkeit und soziale Akzeptanz.
 - Soziale Aspekte (Versorgungsgerechtigkeit, Gesundheit, Akzeptanz): Relevanz: soziale Akzeptanz und gerechte Verteilung von Vorteilen und Nachteilen.
- (c) Lösung: Zwei Hindernisse für eine breite Einführung erneuerbarer Energiesysteme in Deutschland und mögliche Lösungsansätze
 - Netzintegration und Speicherbedarf: Hindernis durch Fluktuation und Infrastrukturlast; Lösungsvorschläge: Systemthemen adressieren (Storage-Technologien wie Batterien, Pumpspeicher, Power-to-X), Netzausbau, bessere Vorhersage- und Demand-Response-Strategien.
 - Genehmigungen und Akzeptanz: Langwierige Genehmigungsverfahren und gesellschaftliche Akzeptanzprobleme; Lösungsvorschläge: beschleunigte Genehmigungsverfahren, transparentes Stakeholder-Management, Anreizsysteme und klare Rechtsrahmen, Bürgerbeteiligung.