Lernzettel

Differentialgleichungen: Grundlagen, Anfangsund Randwertprobleme

Universität: Technische Universität Berlin Kurs/Modul: Analysis III für Ingenieure

Erstellungsdatum: September 6, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Analysis III für Ingenieure

Lernzettel: Differentialgleichungen: Grundlagen, Anfangs- und Randwertprobleme

(1) Grundlagen.

Eine Differentialgleichung (DGL) ist eine Gleichung, die Ableitungen einer Unbekannten enthält. Sie beschreibt Abhängigkeiten von Größen entlang eines Parameters (z. B. der Variablen x).

(1.1) Ordnung und Typ.

Ordnung
$$n: y^{(n)}(x) + \dots = g(x, y, \dots)$$

Lineare DGL: $a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_0(x)y = g(x)$

(1.2) Anfangs- und Randwerte.

Anfangsproblem (IVP):
$$y(x_0) = y_0$$

Randwertproblem (BVP): $y(a) = \alpha$, $y(b) = \beta$

(1.3) Lösungskonzepte.

Eine Lösung ist eine Funktion y(x), die die DGL erfüllt und die gegebenen Rand- bzw. Anfangswerte erfüllt.

(1.4) Linearität und Superposition.

Bei linearen DGLen gilt: Falls y_1 und y_2 Lösungen der inhomogenen Gleichung sind, dann ist auch jede Linearkombination $c_1y_1 + c_2y_2$ nur dann wieder eine Lösung, sofern die Gleichung homogen ist. (Hinweis: Im Allgemeinen gilt das Prinzip der Superposition nur für lineare Gleichungen.)

(2) Erste Ordnung: Integrationsfaktor.

Für lineare DGL der Form

$$y'(x) + p(x)y(x) = q(x).$$

Integrationsfaktor.

$$\mu(x) = \exp\left(\int p(x) \, dx\right)$$

Lösungsform.

$$y(x) = \frac{1}{\mu(x)} \left(\int \mu(x) \, q(x) \, dx + C \right)$$

(3) Beispiel einer IVP erster Ordnung.

Gegeben sei

$$y'(x) + 2y(x) = e^{3x}, y(0) = 4.$$

Lösungsschritte.

$$y_h(x) = C e^{-2x}$$

$$y_p(x) = A e^{3x} \quad \Rightarrow \quad 3A e^{3x} + 2A e^{3x} = e^{3x} \Rightarrow A = \frac{1}{5}$$
$$y(x) = C e^{-2x} + \frac{1}{5} e^{3x}$$
$$y(0) = 4 \Rightarrow C + \frac{1}{5} = 4 \Rightarrow C = \frac{19}{5}$$
$$y(x) = \frac{19}{5} e^{-2x} + \frac{1}{5} e^{3x}$$

(4) Zweite Ordnung: lineare DGL mit konstanten Koeffizienten. Allgemeine Form:

$$ay''(x) + by'(x) + cy(x) = g(x).$$

Homogene Lösung.

$$a r^{2} + b r + c = 0 \implies r_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

 $y_{h}(x) = C_{1}e^{r_{1}x} + C_{2}e^{r_{2}x}$

Partikuläre Lösung.

Für konstante Rechtsseite g(x) = K gilt bei $c \neq 0$ oft

$$y_p(x) = \frac{K}{c}$$

(sofern diese Form nicht durch die Homogenität schon erzeugt wird).

Beispiel.

$$y'' - 3y' + 2y = 1$$

Lösungsweg.

$$y_h(x) = C_1 e^x + C_2 e^{2x}$$
$$y_p(x) = \frac{1}{2}$$
$$y(x) = C_1 e^x + C_2 e^{2x} + \frac{1}{2}$$

(5) Randwert- und Eigenwertaufgaben.

Typisches Beispiel auf dem Intervall [0, L]:

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0, y(L) = 0$

Lösung.

Allgemeine Lösung hängt von λ ab.

Fall
$$\lambda = \mu^2 > 0$$
: $y(x) = A\cos(\mu x) + B\sin(\mu x)$
 $y(0) = 0 \Rightarrow A = 0$, $y(L) = 0 \Rightarrow B\sin(\mu L) = 0$

Für nicht-triviale Lösungen muss $\sin(\mu L) = 0 \Rightarrow \mu L = n\pi$ mit n = 1, 2, ...Daraus folgt

$$\lambda_n = \left(\frac{n\pi}{L}\right)^2, \quad y_n(x) = \sin\left(\frac{n\pi}{L}x\right)$$

(6) Existenz und Eindeutigkeit (Wesentlicher Satz).

Für die erste Ordnung gilt: Sei f(x,y) stetig in einem Rechteck $\{(x,y): a \leq x \leq b, c \leq y \leq d\}$ und erfülle dort eine Lipschitz-Bedingung in y,

$$|f(x, y_1) - f(x, y_2)| \le L|y_1 - y_2|$$
 für alle $(x, y_1), (x, y_2)$ in dem Rechteck.

Dann besitzt das Anfangswertproblem

$$y'(x) = f(x, y), \quad y(x_0) = y_0$$

eine eindeutige Lösung auf einem Intervalle um x_0 .

(7) Zusammenfassung.

- Erste Ordnung: Integrationsfaktor und lineare Form.
- Zweite Ordnung: homogene Lösung mittels charakteristischer Gleichung; partikuläre Lösung je nach Rechtsseite.
- Randwert- und Eigenwertprobleme: häufige Form $y'' + \lambda y = 0$ mit Randbedingungen; diskrete Eigenwerte λ_n und Eigenfunktionen y_n .

Hinweis zur Weiterführung.

Für Randwertprobleme mit allgemeinen Randbedingungen und größere Systeme gilt oft die Theorie der Sturm-Liouville-Systeme und numerische Verfahren (z. B. Galerkin-Ansätze, Finite-Differenzen-Verfahren) für approximate Lösungen.