Lernzettel

Grundlagen der komplexen Funktionen: Analytische Funktionen, Holomorphie und Cauchy-Riemann

Universität: Technische Universität Berlin Kurs/Modul: Analysis III für Ingenieure

Erstellungsdatum: September 6, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Analysis III für Ingenieure

Lernzettel: Grundlagen der komplexen Funktionen: Analytische Funktionen, Holomorphie und Cauchy-Riemann

(1) Analytische Funktionen und Holomorphie.

Eine Funktion $f:D\to\mathbb{C}$ mit offener Menge $D\subseteq\mathbb{C}$ heißt analytisch an einer Stelle $z_0\in D$, wenn es eine Potenzreihe

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 $(z \in U \subseteq D \text{ offen um } z_0)$

gibt, die in einer Umgebung von z_0 konvergiert und dort mit f übereinstimmt. Eine Funktion heißt holomorph in D, wenn sie in jedem Punkt von D analytisch ist. Im Wesentlichen bedeutet Holomorphie, dass f komplex differenzierbar in einer ganzen Umgebung jedes Punktes von D ist; äquivalent dazu existiert eine komplexe Ableitung f'(z) in jedem Punkt von D.

(2) Cauchy-Riemann-Gleichungen.

Schreibe z=x+iy und f(z)=u(x,y)+iv(x,y) mit $u,v:\mathbb{R}^2\to\mathbb{R}$. Falls die partiellen Ableitungen u_x,u_y,v_x,v_y existieren und stetig sind, gilt

$$u_x(x,y) = v_y(x,y), \qquad u_y(x,y) = -v_x(x,y).$$

Unter dieser Voraussetzung ist f genau dann holomorph in einer Umgebung von einem Punkt, wenn die Cauchy-Riemann-Gleichungen dort erfüllt sind.

(3) Komplexe Ableitung und Zusammenhang mit CR.

Die komplexe Ableitung am Punkt z = x + iy ist

$$f'(z) = u_x(x, y) + i v_x(x, y) = v_y(x, y) - i u_y(x, y),$$

wobei die letzte Gleichung durch CR folgt. Ist CR erfüllt und die partiellen Ableitungen stetig, existiert f'(z) und ist in der Umgebung harmonisch stabil.

(4) Beispiele.

- Holomorph überall: $f(z) = z^n \ (n \in \mathbb{N})$ und $f(z) = e^z$, $\sin z$, $\cos z$ alle ganze Funktionen.
- Allgemein holomorph überall: $f(z) = \sum_{k=0}^{\infty} c_k z^k$ mit konstanter Potenzreihe.
- Nicht-holomorph (CR scheitert):
- $f(z) = \overline{z} = x iy$ mit u(x, y) = x, v(x, y) = -y. Dann $u_x = 1$, $v_y = -1 \Rightarrow CR$ verletzt.
- $f(z) = |z|^2 = x^2 + y^2$ (also $u = x^2 + y^2$, v = 0). Dann $u_x = 2x$, $v_y = 0 \Rightarrow$ CR verletzt (außer an der Nullstelle).

(5) Lokale Darstellung durch Potenzreihen (Analytizität).

Wenn f holomorph in einer Umgebung von $a \in D$ ist, dann existiert eine Radius-R > 0 mit |z - a| < R und eine Potenzreihe

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n,$$

die in dieser Umgebung konvergiert und dort f entspricht. Die Koeffizienten sind gegeben durch

$$c_n = \frac{f^{(n)}(a)}{n!}.$$

(6) Summary und Schlüsse.

- Analytische Funktionen sind lokal durch Potenzreihen darstellbar; Holomorphie bedeutet analytisch in jeder Umgebung eines Punktes.
- Die CR-Gleichungen liefern eine notwendige Bedingung für Holomorphie, ausreichend ist sie zusammen mit Wartebedingungen (stetige partiellen Ableitungen).
- Bekannte ganze Funktionen (z. B. z^n , e^z , $\sin z$, $\cos z$) sind holomorph über ganz \mathbb{C} .

(7) Übungsbeispiele (zum Verständnis).

- Prüfe, ob $f(z) = z^2$ holomorph ist; bestimme f'(z).
- Prüfe CR für $f(z) = z\overline{z} = |z|^2$ und erkläre, warum es nicht holomorph ist.
- Zeige, dass $f(z) = e^{z^2}$ holomorph in \mathbb{C} ist.