Lernzettel

Theoretische Grundlagen der Informatik

Universität: Technische Universität Berlin

Kurs/Modul: Theoretische Grundlagen der Informatik

Erstellungsdatum: September 19, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Theoretische Grundlagen der Informatik

Lernzettel: Theoretische Grundlagen der Informatik

(1) Grundlagen: Mengen, Logik, Abbildungen, Relationen und Ordnungen.

In der Diskreten Mathematik spielen folgende Grundbegriffe eine zentrale Rolle:

$$X \neq \emptyset$$
. $A, B \subseteq X$

- Menge: eine Sammlung eindeutig bestimmter Objekte.
- Abbildung $f: A \to B$: jedem Element von A wird genau ein Element von B zugeordnet.
- Relation $R \subseteq A \times A$: Mengenpaar-Beziehung auf A.
- Ordnung: eine spezielle Relation; Reflexivität, Transitivität und Antisymmetrie.

(2) Grammatiken und Chomsky-Hierarchie.

Formale Grammatiken $(G = (N, \Sigma, P, S))$ erzeugen Sprachen $L(G) \subseteq \Sigma^*$ durch Produktionsregeln P.

 $N = \text{Nichtterminal symbole}, \quad \Sigma = \text{Terminal symbole}, \quad S \in N \text{ Start symbol}$

$$L(G) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$$

Chomsky-Hierarchie (Typen):

- Type-3 (regulär): Produktionen $A \to aB$ oder $A \to a$ (rechte Linearität möglich).
- Type-2 (kontextfrei): Produktionen $A \to \gamma$ mit $\gamma \in (N \cup \Sigma)^*$.
- Type-1 (kontextsensitiv): $\alpha A\beta \to \alpha \gamma \beta$ mit $|\gamma| \ge 1$.
- Type-0 (unbeschränkt): beliebige Produktionen $\alpha \to \beta$ mit Mindestbedingungen.

Es gilt: Type-3 \subset Type-2 \subset Type-1 \subset Type-0. Beispiele:

$$G_3: S \to aS \mid b \pmod{\text{regulär}}$$

 $G_2: S \to aSb \mid \varepsilon \pmod{\text{kontextfrei}}$

(3) Endliche Automaten und Kellerautomaten.

Endliche Automaten (DFA/NFA):

Ein DFA $A = (Q, \Sigma, \delta, q_0, F)$ besitzt $\delta : Q \times \Sigma \to Q$; Sprache

$$L(A) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \in F \}$$

Ein NFA erlaubt neben mehreren Übergängen auch ε -Übergänge.

Kellerautomaten (PDA):

Ein Kellerautomat $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ besitzt ein Stack-Symbol- Z_0 und Übergänge der Form $\delta : Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \to \mathcal{P}(Q \times \Gamma^*)$. Sprachen, die von PDA akzeptiert werden, sind genau die kontextfreien Sprachen.

(4) Turingmaschinen.

Eine Turingmaschine $T = (Q, \Gamma, \Sigma, \delta, q_0, q_{\rm acc}, q_{\rm rej})$ arbeitet auf einem endlosen Band (Alphabet

$\Gamma, \Sigma \subseteq \Gamma$ Eingabealphabet).

 $(\delta \text{ definiert Sprünge in Abhängigkeit von gelesenen Symbolen, dem aktuellen Zustand und dem$ Stack der Bandposition.)

 $L \subseteq \Sigma^*$ ist rekursiv, falls $\exists T$, T entscheidet L in endlicher Zeit.

(5) Berechenbarkeit.

Entscheidbarkeit bedeutet, dass eine Turingmaschine für jedes Eingabewort in endlicher Zeit ja/nein antwortet.

Halteproblem: Es gibt keinen generellen Algorithmus, der für jedes Paar (M, w) entscheidet, ob die TM M auf w hält.

(6) Komplexität.

Zeit- und Speicherkomplexität betrachtet das Verhalten von Algorithmen in Abhängigkeit von der Eingabelänge n.

$$Zeit \in O(f(n)), Speicher \in O(g(n))$$

Wichtige Klassen:

 $P = \{L \mid \text{Es gibt eine deterministische TM, die } L \text{ in poly}(n) \text{ entscheidet}\}$

 $NP = \{L \mid Es \text{ gibt eine nondeterministische TM, die } L \text{ in poly Zeit entscheidet}\}$

Beispiele:

P: Wortproblem für reguläre Sprachen

NP-Vollständigkeit: $L \in NP$, und für jedes $L' \in NP$ $L' \leq_m L$

$$P \neq NP$$
 (offene Frage)

Begriffe:

$$L_1 \leq_m L_2$$
 (polynomielle Reduktion)

Reduktion: $\exists f: \Sigma_1^* \to \Sigma_2^*, |f(x)| \leq \text{poly}(|x|) \text{ so dass } x \in L_1 \iff f(x) \in L_2$

(7) Beispiele und Hinweise zu Wort- und Sprachen in der Hierarchie.

• Regular:

 $L = \{ w \in \{a, b\}^* \mid w \text{ hat gerade Länge} \}$

 $Regulrer Ausdruck : (aa|ab|ba|bb)^*.$

$$L = \{w \in \{a, b\}^* \mid |w| \text{ ist gerade}\}$$

• Kontextfrei (aber nicht regulär):

$$L = \{ a^n b^n \mid n \ge 0 \}$$

Grammatik(kontextfrei):

$$S \to aSb \mid \varepsilon$$
.

$$L = \{a^n b^n \mid n \ge 0\}$$

• Kontextsensitiv:

 $L = \{ ww \mid w \in \{0,1\}^* \}$ ist kontextsensitiv, aber nicht kontextfrei.