Lernzettel

Mengen, Relationen, Abbildungen und Ordnungen

Universität: Technische Universität Berlin

Kurs/Modul: Theoretische Grundlagen der Informatik

Erstellungsdatum: September 19, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Theoretische Grundlagen der Informatik

Lernzettel: Mengen, Relationen, Abbildungen und Ordnungen

(1) Mengen. Eine Menge ist eine Zusammenfassung von Objekten, bei der jedes Objekt höchstens einmal vorkommt. Notation: $A \subseteq B$ oder $A = \{x \mid P(x)\}$. Beispiele: $A = \{1, 2, 3\}$, $B = \{a, b, c\}$, $X = \mathbb{N}$.

Mengenoperatoren. Vereinigung, Schnitt, Differenz und das kartesische Produkt:

$$A \cup B$$
, $A \cap B$, $A \setminus B$, $A \times B$.

Leere und universelle Menge:

$$\emptyset$$
, U .

De Morgansche Gesetze.

$$\overline{A \cup B} = \overline{A} \cap \overline{B}, \qquad \overline{A \cap B} = \overline{A} \cup \overline{B}.$$

Kardinalität und Potenzmenge.

 $|A| \text{ ist die Anzahl der Elemente von } A, \quad \mathcal{P}(A) = \{S \mid S \subseteq A\}, \quad |\mathcal{P}(A)| = 2^{|A|}.$

(2) Relationen. Eine Relation R $A \times A$ ordnet Elemente von A zu sich selbst oder untereinander zu.

Wichtige Eigenschaften (auf A): - Reflexivität: $\forall a \in A : (a,a) \in R$ - Symmetrie: $\forall a,b \in A : (a,b) \in R \Rightarrow (b,a) \in R$ - Antisymmetrie: $\forall a,b \in A : (a,b) \in R \land (b,a) \in R \Rightarrow a=b$ - Transitivität: $\forall a,b,c \in A : (a,b) \in R \land (b,c) \in R \Rightarrow (a,c) \in R$

Beispiele: - Gleichheitsrelation: a = b (auf beliebiger Menge) - \leq auf \mathbb{N} ist eine Teilordnung (reflexiv, antisymmetrisch, transitiv)

Äquivalenzrelationen: reflexiv, symmetrisch, transitiv. Teilordnungen (Partielle Ordnungen): reflexiv, antisymmetrisch, transitiv.

Komposition von Relationen: Seien $R \subseteq A \times B$ und $S \subseteq B \times C$. Dann ist

$$S \circ R \subseteq A \times C$$
, $(a,c) \in S \circ R \iff \exists b \in B : (a,b) \in R \land (b,c) \in S$.

(3) Abbildungen (Funktionen). Eine Abbildung f: $A \to B$ ordnet jedem Element $a \in A$ exakt ein Element $f(a) \in B$ zu.

Eigenschaften: - injektiv (eineindeutig): $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$ - surjektiv (vollständige Abdeckung): Im(f) = B - bijektiv: injektiv und surjektiv

Bild und Definitionsbereich:

$$Dom(f) = A, \quad Im(f) = \{f(a) \mid a \in A\}.$$

Kombination und Inverse:

$$(q \circ f)(a) = q(f(a)).$$

Inverse: $f^{-1}: B \to A$ existiert genau dann, wenn f bijektiv; dann gilt $f^{-1}(f(a)) = a$ und $f(f^{-1}(b)) = b$ für alle entsprechenden Elemente.

(4) Ordnungen. Eine Teilordnung \leq auf einer Menge P ist eine Relation, die reflexiv, antisymmetrisch und transitiv ist. Beispiele: - (\mathbb{N}, \leq) ist eine totale Ordnung - $(\mathcal{P}(S), \subseteq)$ ist eine Teilordnung auf der Potenzmenge

Totale Ordnung (linear): $\forall a,b \in P: a \leq b \text{ oder } b \leq a.$

Hasse-Diagramme veranschaulichen Teilordnungen, ohne explizite Transitivität oder Reflexivität darzustellen.

Zusammenfassung der Formeln. - Mengenoperatoren: $A \cup B$, $A \cap B$, $A \setminus B$ - Kardinalität: $|A|, |\mathcal{P}(A)| = 2^{|A|}$ - Relationen: Reflexivität, Symmetrie, Antisymmetrie, Transitivität - Funktionen: $f: A \to B$, $\mathrm{Dom}(f) = A$, $\mathrm{Im}(f) \subseteq B$, $(g \circ f)(a) = g(f(a))$ - Ordnungen: Reflexiv, antisymmetrisch, transitiv; total/linear