Lernzettel

Wahrscheinlichkeitsrechnung: Grundbegriffe, Axiome, Kombinatorik und Zufallsexperimente

Universität: Technische Universität Berlin

Kurs/Modul: Statistik I für Wirtschaftswissenschaften

Erstellungsdatum: September 19, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Statistik I für Wirtschaftswissenschaften

Lernzettel: Statistik I für Wirtschaftswissenschaften

Wahrscheinlichkeitsrechnung: Grundbegriffe, Axiome, Kombinatorik und Zufallsexperimente

(1) Grundbegriffe der Wahrscheinlichkeitsrechnung.

Zufallsexperiment – ein Vorgang mit unsicherem Ausgang. Der $Ergebnisraum\ S$ enthält alle möglichen Ergebnisse $\omega \in S$. Ein $Ereignis\ A \subseteq S$ ist eine Teilmenge von S.

(2) Axiome der Wahrscheinlichkeit.

Die Wahrscheinlichkeit P erfüllt folgende Eigenschaften.

$$P(A) \ge 0$$
 für alle $A \subseteq S$.

$$P(S) = 1.$$

Für abzählbar disjunkte Ereignisse
$$A_i$$
: $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$.

(3) Kombinatorik.

Zum Zählen in Zufallsexperimenten.

Permutationen (Anzahl):
$$A(n,k) = \frac{n!}{(n-k)!}, \quad n \ge k.$$

Kombinationen:
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}, \quad 0 \le k \le n.$$

Bei gleichverteilten Ergebnissen:
$$P(A) = \frac{|A|}{|S|}$$
.

(4) Zufallsexperimente.

Ein Zufallsexperiment ist ein Vorgang mit unsicherem Ausgang.

- $Zufallsvariable\ X: \Omega \to \mathbb{R}$, ordnet jedem ω einen Realwert zu.
- Diskret vs. Stetig: abzählbare Werte vs. Werte im Intervall.
- Unabhängigkeit: Ereignisse A, B sind unabhängig, falls $P(A \cap B) = P(A)P(B)$.
- Bedingte Wahrscheinlichkeit: $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$ für P(B) > 0.

(5) Beispiele zur Verdeutlichung.

Beispiel 1: Zwei Würfe einer fairen Münze (Kopf/Zahl).

Beispiel 2: Würfelwurf – Wahrscheinlichkeit, eine gerade Zahl zu würfeln: $P = \frac{3}{6} = \frac{1}{2}$.