Lernzettel

Stetige Wahrscheinlichkeitsmodelle: Normalverteilung, Exponentialverteilung und Gleichverteilung

Universität: Technische Universität Berlin

Kurs/Modul: Statistik I für Wirtschaftswissenschaften

Erstellungsdatum: September 19, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study.AllWeCanLearn.com

Statistik I für Wirtschaftswissenschaften

Lernzettel: Stetige Wahrscheinlichkeitsmodelle: Normalverteilung, Exponentialverteilung und Gleichverteilung

(1) Normalverteilung.

Sei X ~
$$\mathcal{N}(\mu, \sigma^2)$$
. Die Dichteist $f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$, $x \in \mathbb{R}$.

CDF und Standardisierung.

$$F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right),$$

mit Φ der Standard-Normalverteilungsfunktion. Die Standardisierung lautet

$$Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1).$$

Eigenschaften und Momente.

$$\mathbb{E}[X] = \mu, \quad \operatorname{Var}(X) = \sigma^2.$$

MGF.

$$M_X(t) = \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right), \quad t \in \mathbb{R}.$$

Alternative Formulierungen.

Skewness
$$(X) = \frac{0}{\sigma^3} = 0$$
, Kurtosis $(X) = 3$.

Eigenschaften bei Transformation. Wenn $X \sim \mathcal{N}(\mu, \sigma^2)$ und $a, b \in \mathbb{R}$, dann $aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

(2) Exponential verteilung.

Sei $X \sim \text{Exp}(\lambda)$ mit $\lambda > 0$. Die Dichte:

$$f_X(x) = \lambda e^{-\lambda x}, \quad x \ge 0.$$

CDF.

$$F_X(x) = 1 - e^{-\lambda x}, \quad x \ge 0.$$

Erwartung und Varianz.

$$\mathbb{E}[X] = \frac{1}{\lambda}, \quad \operatorname{Var}(X) = \frac{1}{\lambda^2}.$$

MGF.

$$M_X(t) = \frac{\lambda}{\lambda - t}, \quad t < \lambda.$$

Eigenschaften.

• Speicherlose Eigenschaft: $P(X > s + t \mid X > s) = P(X > t)$.

• Hazard-Rate: $h(t) = \lambda$.

(3) Gleichverteilung.

Sei $X \sim \mathcal{U}(a, b)$ mit a < b. Die Dichte:

$$f_X(x) = \frac{1}{b-a}, \quad x \in [a, b].$$

CDF.

$$F_X(x) = \begin{cases} 0, & x < a, \\ \frac{x-a}{b-a}, & a \le x \le b, \\ 1, & x > b. \end{cases}$$

Erwartung und Varianz.

$$\mathbb{E}[X] = \frac{a+b}{2}, \quad Var(X) = \frac{(b-a)^2}{12}.$$

MGF.

$$M_X(t) = \frac{e^{tb} - e^{ta}}{t(b-a)}, \quad t \neq 0.$$

Hinweis. Die Parameter a, b legen den Bereich der Verteilung fest; die Dichte ist 0 außerhalb von [a, b].