Lernzettel

Numerische Methoden zur Gleichgewichtsbestimmung: Gibbs-Energie-Minimierung, Massenbilanz, Konvergenzverfahren

Universität: Technische Universität Berlin

Kurs/Modul: Thermodynamik II Erstellungsdatum: September 6, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Thermodynamik II

Lernzettel: Thermodynamik II – Numerische Methoden zur Gleichgewichtsbestimmung

(1) Grundprinzip der Gleichgewichtsbestimmung.

Der Gleichgewichtszustand eines verfahrenstechnischen Systems wird durch die Minimierung der Gibbs-Energie G bei gegebenem Temperatur T, Druck P und vorhandenen Stoffmengen beschrieben. Dabei wirken die Material- und Stoffbilanz-Einschränkungen als Nebenbedingungen der Optimierung.

(2) Gibbs-Energie-Minimierung.

Die Gibbs-Energie lässt sich schreiben als

$$G(T, P, \{n_i\}) = \sum_{i} n_i \, \mu_i(T, P, \{n_j\}_{j \neq i}),$$

wobei μ_i das chemische Potential von Spezies i ist. Für eine ideale Lösung gilt typischerweise

$$\mu_i(T, P, \{n_i\}) = \mu_i^{\circ}(T) + RT \ln a_i, \quad a_i = \gamma_i x_i \text{ (Aktivität)},$$

mit x_i der Molenfraktion und γ_i dem Aktivitätskoeffizienten.

Gleichgewichtsbedingungen durch Minimierung

Unter der Bedingung konstanter T, P und der Massenbilanz führt die Minimierung von G zu den Gleichgewichtsbedingungen. Eine elegante Darstellung nutzt Lagrange-Multiplikatoren:

$$\mathcal{L} = G + \sum_{k} \lambda_{k} \left(\sum_{i} a_{ki} n_{i} - b_{k} \right),$$

und es gilt

$$\frac{\partial \mathcal{L}}{\partial n_i} = \mu_i + \sum_k \lambda_k a_{ki} = 0.$$

Ergebnis: In äquilibrierten Mehrphasen-Systemen gilt für alle i, die in zwei Phasen vorhanden sind,

$$\mu_i^{\alpha} = \mu_i^{\beta}$$
 für alle Phasen α, β .

Diese Bedingung zusammen mit den Massenbilanzen bestimmt die Gleichgewichtszusammensetzungen.

(3) Massenbilanz (Mehrphasensystem).

Für jedes Spezies-i gilt die Gesamtmole-Bilanz als

$$n_i^{\text{tot}} = \sum_{\alpha=1}^P n_i^{(\alpha)},$$

wobei $n_i^{(\alpha)}$ die Molenanzahl von i in Phase α ist. Die Phasenmoleanzahlen $N^{(\alpha)} = \sum_i n_i^{(\alpha)}$ und die Molenfraktionen

$$y_i^{(\alpha)} = \frac{n_i^{(\alpha)}}{N^{(\alpha)}}, \qquad \sum_i y_i^{(\alpha)} = 1$$

sind weitere Größen, über die die Bilanz gelöst wird. Die Bedingung der Massenbilanz muss zusammen mit den Gleichgewichtsbedingungen erfüllt sein.

(4) Konvergenzverfahren zur Lösung der Gleichungssysteme.

Viele Gleichgewichtsprobleme führen zu nichtlinearen Gleichungssystemen F(z)=0. Typische Vorgehensweisen:

- Newton-Raphson-Verfahren (NR):

$$J(z^k) \Delta z^k = -F(z^k), \quad z^{k+1} = z^k + \Delta z^k,$$

wobei $J(z)=\frac{\partial F}{\partial z}$ die Jacobimatrix ist. - Geführte Konvergenz durch Dämpfung:

$$z^{k+1} = z^k + \lambda^k \Delta z^k, \quad 0 < \lambda^k \le 1,$$

wobei λ^k durch Linien-Suche festgelegt wird, um Nicht-Negativität und Fortschritt zu sichern. - Alternative: Sequentielle Aktualisierung (z. B. Gauss-Seidel-ähnlich) oder Block-NR bei großen systemspezifischen Strukturen. - Wichtige Praktiken: - gute initiale Vermutung (Phasefractions, Zusammensetzungen), - Regularisierung bei fastsingulären Jacobian-Matrizen, - Einhaltung von Nichtnegativitäts- und Summen-Bedingungen.

(5) Beispiel: Gleichgewicht zweier Phasen in einem binären idealen System.

System: zwei Phasen (L = Flüssigphase, V = Dampfphase), zwei Komponenten A und B, bei Temperatur T und Druck P.

Gleichgewichtsbedingungen

$$\mu_A^L = \mu_A^V, \qquad \mu_B^L = \mu_B^V.$$

Für ideal gelöste Phasen gilt

$$\mu_A^\alpha = \mu_A^{0,\alpha} + RT \ln y_A^\alpha, \quad \mu_B^\alpha = \mu_B^{0,\alpha} + RT \ln y_B^\alpha, \quad \alpha \in \{L,V\}.$$

Massenbilanzen (Totalmole-Bilanz)

$$n_A^{\rm tot} = N^L y_A^L + N^V y_A^V, \quad n_B^{\rm tot} = N^L y_B^L + N^V y_B^V, \quad$$

mit

$$y_A^L + y_B^L = 1, \quad y_A^V + y_B^V = 1.$$

Die unbekannten Größen sind typischerweise die Phasenmole Anzahlen N^L, N^V sowie die Phasenzusammensetzungen y_i^L, y_i^V . Diese Gleichungen werden durch das gewählte Konvergenzverfahren gelöst.

Hinweise zur Praxis

- Für reale Systeme müssen Aktivitätskoeffizienten γ_i oder Gleichgewichtstafeln verwendet werden.
- Bei Multi-Komponenten-/Multi-Phasen-Systemen ist die Anzahl der Gleichungen oft groß; gute Startwerte sind entscheidend.
- Überprüfe Reintegration von Energie- und Massen-Bilanzen, sowie Positivität der Phasenfraktionen.