Lernzettel

Technische Wärmelehre (9 LP)

Universität: Technische Universität Berlin Kurs/Modul: Technische Wärmelehre (9 LP)

Erstellungsdatum: September 20, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Technische Wärmelehre (9 LP)

Lernzettel: Technische Wärmelehre (9 LP)

(1) Hauptsätze der Thermodynamik.

- Nulltes Gesetz: Zwei Systeme befinden sich gleichzeitig im Gleichgewicht, wenn sie mit demselben Thermometer gemessen werden; daraus folgt die Definition der Temperatur.
- Erstes Hauptgesetz (Energieerhaltung): Die Änderung der inneren Energie eines Systems entspricht der zugeführten Wärme minus der an das Umfeld geleisteten Arbeit.

$$dU = \delta Q - \delta W$$

Für geschlossene Systeme mit stationärem Druck gilt

$$dU = \delta Q - P \, dV \quad (W = P \, dV)$$

• Zweites Hauptgesetz: Nicht umkehrbare Prozesse erhöhen die Entropie des Universums; für reversible Prozesse gilt $dS = \delta Q_{\text{rev}}/T$. Technisch bedeutsam sind Hierarchie und Richtung von Prozessen.

$$\Delta S \ge \int \frac{\delta Q}{T}$$

• Drittes Hauptgesetz (Nullpunkt der Entropie): Die Entropie eines perfekten Kristalls bei absolutem Nullpunkt ist null.

(2) Zustandsgrößen und Zustandsänderungen.

- Zustandsgrößen: Druck P, Volumen V, Temperatur T, Stoffmenge n bzw. Dichte ρ ; intensive Größen wie Dichte ρ , Druck P und Temperatur T; ausführliche Größen wie U, H, S, V.
- Spezifische Größen: u = U/m, h = H/m, s = S/m, v = V/m.
- Zustandsänderungen: isobar (konstanter Druck), isochor (konstantes Volumen), isotherm (konstante Temperatur), adiabatisch (kein Wärmeaustausch, $\delta Q = 0$).
- Zustandsgleichungen: ideale Gasgleichung

$$PV = nRT$$
 bzw. $P = \rho R_{\text{specific}}T$

(3) Hydrodynamik (Fluiddynamik).

- Kontinuitätsgleichung (Massenerhaltung) für strömende Fluide.
- Bernoulli-Gleichung für strömende, ideale, inkompressible Medien entlang einer Stromlinie:

$$p + \frac{1}{2}\rho v^2 + \rho gz = \text{const.}$$

• Reale Effekte (Viskosität, Wärmeübergang) gehen als Verluste in die praktischen Berechnungen ein.

(4) Technische Bauteile.

- Dampf- bzw. Heizkessel (Wärmeerzeugung; Wasser/ Dampf als Arbeitsmedium).
- Turbinen (Wird durch expandierenden Dampf bzw. Gas betrieben; mechanische Arbeit).
- Kondensatoren (Abgabe von Wärme, Dampfkondensation zu Wasser).
- Wärmeübertrager (Wärmetauscher; Gegenstrom-, Kreuzstromprinzipien).
- Pumpen/Kompressoren (Schaffung oder Erhöhung des Drucks; Arbeit input).

(5) Stoffdaten und Stoffdiagramme.

- Stoffdaten: Verdampfungsenthalpie h_{fg} , Randenthalpien h_f, h_g , Entropien s_f, s_g am Sättigungspunkt; Sättigungsdruck $p_{\text{sat}}(T)$.
- \bullet Verdampfungsdiagramme: T-log p oder h-s Diagramme (Hammel- oder Mollier-Diagramm) zur Bestimmung von Zuständen und prozessabhängigen Größen.
- Verdampfungsgrad $x = \frac{h h_f}{h_q h_f}$ (Qualität) für zweiphasige Zustände.
- Übliche Formeln:

$$pV = nRT$$
 bzw. $p = \rho R_{\text{specific}}T$

(6) Kreisprozesse.

• Carnot-Kreisprozess: idealer reversibler Kreisprozess; maximale Effizienz

$$\eta_{\text{Carnot}} = 1 - \frac{T_L}{T_H}$$
 mit absoluter Temperatur T .

• Rankine-Zyklus (typischer Kraftwerkszyklus): Dampferzeugung, Turbinenexpansion, Kondensation, Pumpenkompression.

$$W_{\text{net}} = (h_1 - h_2) - (h_4 - h_3)$$

$$\eta_{\text{Rankine}} = \frac{W_{\text{net}}}{Q_{\text{in}}} = \frac{(h_1 - h_2) - (h_4 - h_3)}{h_1 - h_4}$$

(7) Wärmeübertragung.

• Leitung (Wärmeleitung): Fourier'sches Gesetz

$$\dot{Q} = -kA\frac{\mathrm{d}T}{\mathrm{d}x}$$

bzw. über T und x vereinfacht

$$\dot{Q} = \frac{kA\Delta T}{\Delta x}.$$

• Konvektion (Zweite Wärmeübertragung): Newtonsches Abkühlungsgesetz

$$\dot{Q} = hA\Delta T_{\rm lm}$$

mit der logarithmischen Temperaturdifferenz $\Delta T_{\rm lm}$.

• Strahlung: Stefan-Boltzmann-Gesetz

$$\dot{Q} = \varepsilon \sigma A (T_{\text{ober}}^4 - T_{\text{umgeb}}^4).$$

(8) Feuchte Luft.

• Feuchte Luft enthält trockene Luft plus Wasserdampf; definierte Größe

$$w = \frac{m_v}{m_{\rm da}}$$
 (kg Wasser pro kg trockene Luft).

• Relative Luftfeuchte ϕ :

$$\phi = \frac{p_v}{p_{\rm sat}(T)} \quad \text{(relative Feuchte)}.$$

• Enthalpie feuchter Luft (ca. gängig):

$$h \approx c_p T + w \left(h_{\rm fg} + c_{pv} T \right),$$

wobei c_p die spez. Wärme von trockener Luft, $h_{\rm fg}$ die Verdampfungsenthalpie und c_{pv} die spez. Wärme des Wasserdampfes sind.

Hinweise zur Anwendung.

- Nutze zur Berechnung die geeigneten Zustandsgrößen und Tabellen (Sattpunkt-Tabellen) bzw. Diagramme (h-s, T-s).
- Beachte, dass reale Systeme Verluste aufweisen; ideale Formeln liefern nur Näherungen.