Lernzettel

Strahlung: Stefan-Boltzmann-Gesetz, Emissionsgrad, Strahlungsaustausch zwischen Oberflächen

> Universität: Technische Universität Berlin Kurs/Modul: Technische Wärmelehre (9 LP)

Erstellungsdatum: September 20, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study.AllWeCanLearn.com

Technische Wärmelehre (9 LP)

Lernzettel: Strahlung

(1) Stefan-Boltzmann-Gesetz. Diffuse, ideale Strahlung einer glühenden Oberfläche: jede Oberfläche strahlt als Gleichgewichtszustand unabhängig von ihrer Form. Die ausgesandte Leistung pro Fläche ist der sogenannte intensive Strahlungsfluss q":

$$\dot{q}'' = \varepsilon \, \sigma \, \left(T^4 - T_{\rm env}^4 \right),$$

wobei

- ε Emissivität der Oberfläche (Emissionsgrad), $0 \le \varepsilon \le 1$,
- $\sigma = 5.670374419 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$ das Stefan-Boltzmannsche Konstante,
- \bullet T die Oberflächentemperatur und $T_{\rm env}$ die Umgebungstemperatur.
- (2) Emissionsgrad (Emissivität). Der Emissionsgrad ε charakterisiert die Fähigkeit einer Oberfläche zur Abstrahlung bzw. Absorption. Eigenschaften:
 - $\varepsilon = 1$ entspricht einem perfekten Schwarzkörper (Blackbody),
 - $\varepsilon \ll 1$ bei spiegelnden oder glänzenden Oberflächen (z. B. poliertes Metall, Lacke).

Zusammenhang mit Abstrahlung und Absorption (Kirchhoff-Gesetz):

$$\alpha = \varepsilon$$
 im Gleichgewicht,

wobei α der Absorptionsgrad ist.

Typische Werte (Anhaltspunkte):

- Poliertes Metall: $\varepsilon \approx 0.05 0.15$,
- Glänzende Oberflächen: $\varepsilon \approx 0.1 0.3$,
- Oxidierte oder matt lackierte Oberflächen: $\varepsilon \approx 0.6 0.95$,
- Schwarzer Lack/Schwärze: $\varepsilon \approx 0.95 1.0$.
- (3) Strahlungsaustausch zwischen Oberflächen. Für zwei diffuse, graue Oberflächen mit Flächen A_1 und A_2 und Emissivitäten ε_1 , ε_2 sowie dem Sichtfaktor F_{12} gilt der Netto-Strahlungsaustausch:

$$\dot{Q} = \frac{\sigma A_1 F_{12} (T_1^4 - T_2^4)}{\frac{1}{\varepsilon_1} + F_{12} (\frac{1}{\varepsilon_2} - 1)}.$$

Dabei ist

- T_1 bzw. T_2 die Oberflächentemperaturen,
- F_{12} der Sichtfaktor von Fläche 1 zu Fläche 2 (Anteil der von Fläche 1 ausgehenden Strahlung, der Fläche 2 zugeht),
- $\bullet \ \sigma$ das Stefan-Boltzmannsche Konstante.

Hinweis:

• Für den häufigen Fall zweier gegenüberliegender, paralleler Flächen mit $F_{12} = 1$ und $A_1 = A_2 = A$ vereinfacht sich die Gleichung zu

$$\dot{Q} = \sigma A \frac{T_1^4 - T_2^4}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1}.$$

Beispiel: zwei gegenüberliegende Flächen, $A_1 = A_2 = 1 \,\mathrm{m}^2$, $F_{12} = 1$, $\varepsilon_1 = \varepsilon_2 = 0.80$, $T_1 = 500 \,\mathrm{K}$, $T_2 = 300 \,\mathrm{K}$. Zuerst berechnen wir

$$T_1^4 - T_2^4 = 500^4 - 300^4 = 6.25 \times 10^{10} - 8.1 \times 10^9 = 5.44 \times 10^{10} \text{ K}^4.$$

Dann

$$\dot{Q} = \frac{\sigma \cdot 1 \cdot 1 \cdot 5.44 \times 10^{10}}{\frac{1}{0.80} + \frac{1}{0.80} - 1} = \frac{(5.670374419 \times 10^{-8}) \cdot 5.44 \times 10^{10}}{1.25 + 1.25 - 1} \approx \frac{3086}{1.5} \approx 2.1 \times 10^3 \text{ W}.$$

Damit fließt ungefähr 2,1 kW Netto-Strahlungsleistung vom heißen zur kühleren Fläche (bei den Annahmen).

Zusammenfassung.

- Das Stefan-Boltzmann-Gesetz beschreibt die strahlende Leistung einer Oberfläche in Abhängigkeit von Temperatur und Emissivität.
- Der Emissionsgrad ε charakterisiert die Graueigenschaften einer Oberfläche; er beeinflusst maßgeblich den Strahlungsaustausch.
- Der Strahlungsaustausch zwischen Oberflächen hängt von Temperaturdifferenz, Emissivitäten, Flächen und dem Sichtfaktor ab; bei üblichen Geometrien lassen sich einfache Formeln verwenden.