Lernzettel

Säuren, Basen, Puffersysteme und pH-Berechnungen

Universität: Technische Universität Berlin

Kurs/Modul: Einführung in die Allgemeine und Anorganische Chemie

Erstellungsdatum: September 20, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Einführung in die Allgemeine und Anorganische Chemie

Lernzettel: Säuren, Basen, Puffersysteme und pH-Berechnungen

(1) Grundlagen der Säuren und Basen.

Säuren und Basen lassen sich nach verschiedenen Modellen beschreiben.

$$K_a = \frac{[H_3O^+][A^-]}{[HA]}, \qquad K_b = \frac{[BH^+][OH^-]}{[B]}$$

Arrhenius-Modell (limitiert auf wässrige Lösungen):

Säure: $HA \rightarrow H^+ + A^-$ Base: $BOH \rightarrow B^+ + OH^-$

Brønsted-Lowry-Modell (Protonendonator/Protonenakzeptor).

Säure: Protonendonator, Base: Protonenakzeptor.

Beispiel-Reaktion:

$$HA + B \rightleftharpoons A^- + HB^+$$

Eigenschaft des Wassers: Autoprotolyse

$$H_2O + H_2O \rightleftharpoons H_3O^+ + OH^-, \qquad K_w = [H^+][OH^-] \approx 1.0 \times 10^{-14} (25 \text{ °C})$$

pH und pOH:

$$pH = -\log_{10}[H^+],$$
 $pOH = -\log_{10}[OH^-],$ $pK_w = -\log_{10}K_w \approx 14.00 (25 °C)$
 $pH + pOH = pK_w \approx 14.00$

Hinweis: Die Werte hängen von der Temperatur ab; bei anderen Temperaturen verschiebt sich pK_w .

(2) Starke vs. schwache Säuren und Basen.

Starke Säuren/Base liefern nahezu vollständig [H⁺] bzw. [OH⁻] direkt aus der Konzentration.

$$[\mathrm{H^+}] \approx c_{\mathrm{S\"{a}ure}}$$
 (starke einwertige S\"{a}ure z. B. HCl)
$$[\mathrm{OH^-}] \approx c_{\mathrm{Base}}$$
 (starke Base z. B. NaOH)

Schwache Säuren/Basen liefern nur einen Bruchteil der pro Molekül verfügbaren Protonen bzw. Hydroxidionen.

$$K_a = \frac{[H^+][A^-]}{[HA]}, \quad K_b = \frac{[BH^+][OH^-]}{[B]}$$

Beispiele:

- Starke Säure: HCl, HNO₃, H₂SO₄ (First proton stark).
- Schwache Säure: CH₃COOH (pK_a 4.76).
- Starke Base: NaOH.
- Schwache Base: NH_3 (pK_b 4.75).

(3) pH-Berechnungen einfacher Fälle.

(a) Starke Säure (monoprotisch).

Für eine starke einwertige Säure mit Konzentration c gilt $[H^+] = c$.

$$pH = -\log_{10}(c)$$

(b) Starke Base.

$$pOH = -\log_{10}(c), \quad pH = 14.00 - pOH$$

(c) Schwache Säure (monoprotisch).

Bei einer schwachen einwertigen Säure HA mit Anfangskonzentration C gilt oft:

$$K_a = \frac{x^2}{C - x}, \quad x = [\mathrm{H}^+]$$

For $x \ll C$:

$$x \approx \sqrt{K_a C}$$
, pH $\approx -\log_{10} \sqrt{K_a C}$

(d) Schwache Base.

Für eine schwache Base B mit Anfangskonzentration C:

$$K_b = \frac{[\text{BH}^+][\text{OH}^-]}{[B]}, \quad [\text{OH}^-] \approx \sqrt{K_b C}, \quad \text{pOH} \approx -\log_{10} \sqrt{K_b C}, \quad \text{pH} = 14.00 - \text{pOH}$$

Beispiel 1. 0.10 M CH₃COOH, $K_a = 1.8 \times 10^{-5}$.

$$[H^+] \approx \sqrt{(1.8 \times 10^{-5})(0.10)} \approx 1.34 \times 10^{-3} \text{ M}$$

 $pH \approx -\log_{10}(1.34 \times 10^{-3}) \approx 2.87$

Beispiel 2. Pufferlösung CH_3COOH/CH_3COO^- mit $pK_a=4.76$.

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

(4) Puffersysteme und Henderson-Hasselbalch.

Ein Puffer besteht aus einer schwachen Säure HA und ihrer konjugierten Base A⁻. Er widersteht Änderungen des pH-Werts bei Zugabe kleiner Mengen von Säuren oder Basen.

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

Puffergrenzbereich.

Geeignet bei einem Bereich von ca. $pK_a \pm 1$.

Pufferkapazität (grundlegend).

Die Pufferkapazität β beschreibt, wie viel H⁺ bzw. OH⁻ pro Änderung des pH-Werts aufgenommen werden kann. Eine gängige Form ist:

$$\beta = \frac{\mathrm{d}n}{\mathrm{d}(\mathrm{pH})} \approx 2.303 \, C_T \, \frac{K_a[\mathrm{H}^+]}{([\mathrm{H}^+] + K_a)^2}$$

mit $C_T = [HA] + [A^-]$ und $[H^+] = 10^{-pH}$.

Beispiel 3. Eine Pufferlösung enthält $C_T = 0.100 \text{ mol L}^{-1} \text{ CH}_3\text{COOH}/\text{CH}_3\text{COO}^-$ mit $K_a = 1.8 \times 10^{-5}$. Bei pH = 4.76 (also [H⁺] = 1.74×10⁻⁵ M) ergibt sich eine maximale Pufferkapazität.

(5) Mehrstufige Säuren (Polyprotonie).

Bei mehrstufigen Säuren (z. B. H_2CO_3 , H_3PO_4) muss jedes Dissoziationsgleichgewicht separat betrachtet werden. Die pH-Berechnung erfordert oft die Berücksichtigung mehrerer K_a und eine Ladungsbilanz. Allgemein gilt:

- Die erste Dissoziation dominiert oft den pH-Bereich.
- Für starke erste Protonen (z. B. H₂SO₄ stark in der ersten Stufe) ergibt sich die pH hauptsächlich aus dem Rest der Probe.
- Für schwache mehrstufige Säuren verwendet man die entsprechenden K_a und löst das Gleichgewichtssystem numerisch oder mit Näherungen.

(6) Praktische Beispiele und Übungen.

- Übung A: 0.050 M HClO₄ Lösung berechne pH.
- Übung B: Puffersystem aus HA (p K_a =4.76) und A $^-$ in einem Verhältnis 1:3. Bestimme pH.
- Übung C: 0.10 M CH₃COOH + 0.10 M CH₃COO⁻ schätze pH und diskutieren Sie Pufferkapazität.

(7) Gefahrenpunkte und praktische Hinweise.

- Bei starken Säuren/Basen: Schutzbrille, Handschuhe, Laborordnung beachten.
- pH-Berechnungen gelten in idealen wässrigen Lösungen; bei Pufferlösungen und bei Ionenstärken > 0.1 M kann Abweichung auftreten.
- Temperaturabhängigkeit beachten; pK_w und K_a ändern sich mit der Temperatur.