Lernzettel

Nichtmetallchemie: Wasserstoff, Halogene, Chalkogene, Stickstoff- und Phosphorverbindungen, Kohlenstoffmodifikationen, Siliciumverbindungen

Universität: Technische Universität Berlin

Kurs/Modul: Einführung in die Allgemeine und Anorganische Chemie

Erstellungsdatum: September 20, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Einführung in die Allgemeine und Anorganische Chemie

Lernzettel: Nichtmetallchemie: Wasserstoff, Halogene, Chalkogene, Stickstoff- und Phosphorverbindungen, Kohlenstoffmodifikationen, Siliciumverbindungen

(1) Allgemeine Eigenschaften der Nichtmetalle

Nichtmetalle umfassen Wasserstoff, Halogene, Chalkogene, Stickstoff- und Phosphorverbindungen sowie Kohlenstoff und in bestimmten Kontexten Silicium. Eigenschaften: hohe Elektronegativität, meist kein Metallcharakter und vorwiegend kovalente Bindungen. Aggregatzustände reichen von Gas bis fest; Isolatoren dominieren, bei bestimmten Modifikationen jedoch auch leitfähige Eigenschaften (z. B. Graphen). Wichtige Konzepte sind Bindungstypen (kovalent, teils ionisch) und Hybridisierung (sp. sp², sp³), Bildung von Molekül- und Netzwerkverbindungen; Stöchiometrie und Formelsprache bleiben grundlegend.

(2) Wasserstoff

Eigenschaften: farb- und geruchloses Gas, geringe Dichte; zentraler Baustein der Nichtmetall-chemie. Wichtige Verbindungen: H₂, H₂O, Halogenwasserstoffe HX (z. B. HCl, HF). Typische Reaktionen:

$$2 H_2 + O_2 \rightarrow 2 H_2 O$$
, $H_2 + Cl_2 \rightarrow 2 HCl$

Isotope: Deuterium D bzw. Tritium T als Schwerformen.

(3) Halogene

Elemente: Fluor (F_2) , Chlor (Cl_2) , Brom (Br_2) , Iod (I_2) . Eigenschaften: hoch reaktiv, Oxidation-sstufen oft -1; starke Oxidationsmittel in Freistellung. Typische Verbindungen: Halogenwasserstoffe HX (z. B. HF, HCl, HBr, HI), Halogenide NaX, KX und organische Halogenverbindungen. Beispiele Reaktionen:

$$H_2 + Cl_2 \rightarrow 2 \, HCl$$
, $SiCl_4 + 2 \, H_2O \rightarrow SiO_2 + 4 \, HCl$ $C_2H_6 + Cl_2 \rightarrow C_2H_5Cl + HCl$

(4) Chalkogene (Sauerstoffgruppe)

Wichtige Elemente: O, S, Se, Te. Eigenschaften: hohe Reaktivität, Bildung von Oxiden und verschiedenen Sauerstoffverbindungen. Typische Strukturen: Oxide, Oxide in Säuren, Sulfide, Sulfate. Beispiele:

$$\mathrm{O_2} \rightarrow \mathrm{O^{2-}}$$
 in $\mathrm{H_2O},\,\mathrm{CO_2},\,$ $\mathrm{SO_2} + \mathrm{H_2O} \rightarrow \mathrm{H_2SO_3},\,\mathrm{SO_3} + \mathrm{H_2O} \rightarrow \mathrm{H_2SO_4}$

(5) Stickstoff- und Phosphorverbindungen

Stickstoff (N_2) besitzt eine sehr starke Dreifachbindung. Ammoniak NH_3 ist eine wichtige Basenund Ligandenverbindung. Phosphor bildet Phosphate (PO_4^{3-}) , Phosphoroxide und Hauptverbindungen wie P_4 , PCl_3 , PCl_5 , H_3PO_4 . Typische Reaktionen:

$$N_2 + 3 H_2 \rightarrow 2 NH_3$$
 (Haber-Bosch),
$$P_4 + 5 O_2 \rightarrow P_4 O_{10},$$

$$PCl_3 + 3 H_2 O \rightarrow H_3 PO_3 + 3 HCl$$

H₃PO₄ (Phosphorsäure) als zentrale Phosphorverbindung in der Chemie.

(6) Kohlenstoffmodifikationen

Kohlenstoff liegt in mehreren Allotropen vor: Diamant, Graphit, Graphen, Fullerenen und amorpher Kohlenstoff.

- Diamant: starkes 3D-Netzwerk aus C-C-Bindungen (sp³); hohe Härte.
- Graphit: schichtartige Struktur aus sp²-gebundene Graphenebenen; gute Elektronenleitfähigkeit innerhalb der Ebenen.
- Graphen/Fullerenen: 2D bzw. kugelförmige Strukturen mit besonderen elektronischen Eigenschaften.

Typische Reaktionen: Oxidation zu CO_2/CO , Substitution in organischen Systemen, je nach Modifikation unterschiedliche Reaktivität. Formale Hinweise: Diamant-Netzwerk: C-C Bindungen; Graphit: Graphenlagen, C_6 Ringe.

(7) Siliciumverbindungen

Silicium ist ein dominierendes Element der Gruppe 14 neben Kohlenstoff. Wichtige Verbindungen: SiO_2 (Quarz, Netzwerk), Silikate, Siliciumcarbid SiC sowie Silan-Verbindungen SiH₄. Typische Reaktionen:

$$SiCl_4 + 2 H_2O \rightarrow SiO_2 + 4 HCl,$$

 $Si + C \rightarrow SiC,$
 $SiCl_4 + 2 NH_3 \rightarrow Si(NH_2)_4 + 4 HCl.$

Hinweise zu Sicherheit und Praktik

Nichtmetallische Verbindungen zeigen oft spezifische Gefahren: Feuer- und Reaktivität, ätzende Eigenschaften oder giftige Dämpfe. Beachte Gefahrenhinweise, Trage geeignete Schutzausrüstung und folge den Anweisungen des Lehrplans.