Lernzettel

Quellen und Lasten: Spannungsquellen, Stromquellen, gesteuerte Quellen sowie Ersatzquellen

Universität: Technische Universität Berlin

Kurs/Modul: Elektrische Netzwerke **Erstellungsdatum:** September 20, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study.AllWeCanLearn.com

Elektrische Netzwerke

(1) Spannungsquellen.

Eine Spannungsquelle liefert eine festgelegte Spannung unabhängig von der Last. Sie kann als ideales Modell auftreten oder real mit einem Innenwiderstand.

Typische Modellierung:

$$V_T = V_s \frac{R_L}{R_s + R_L}, \qquad I_L = \frac{V_s}{R_s + R_L}.$$

Wichtige Punkte: - Ideale Spannungsquelle: V_s konstant, unabhängig von der Last.

- Innenwiderstand R_s modelliert Verluste bzw. Begrenzung der Quelle.
- Offene Lastspannung $(R_L \to \infty)$ ergibt $V_T \to V_s$.
- Kurzschlussstrom $(R_L \to 0)$ ergibt $I_L \to V_s/R_s$.

(2) Stromquellen.

Eine Stromquelle liefert einen festgelegten Strom unabhängig von der Last.

Typische Modellierung: - Ideale Stromquelle: I_s konstant, hoher Impedanz.

- Real mit internem Widerstand R_p in Parallelschaltung.
- Ersatz durch Thevenin- oder Norton-Formen:

$$V_{\rm OC} = I_s R_p, \qquad R_{\rm th} = R_p.$$

Norton-Äquivalent: - Eine Stromquelle I_s in Parallelschaltung mit R_p ist äquivalent zu einem Thevenin-Quellenpaar mit

$$V_{\rm th} = I_s R_p, \quad R_{\rm th} = R_p.$$

(3) Gesteuerte Quellen.

Gesteuerte Quellen liefern oder ziehen Leistung abhängig von einer externen Größe.

Typen (ideal, mit Kontrollgröße k): - VCVS (Voltage-Controlled Voltage Source): $V_{\text{out}} = a V_{\text{ctrl}}$.

- CCVS (Current-Controlled Voltage Source): $V_{\text{out}} = c I_{\text{ctrl}}$.
- VCCS (Voltage-Controlled Current Source): $I_{\text{out}} = b V_{\text{ctrl}}$.
- CCCS (Current-Controlled Current Source): $I_{\text{out}} = dI_{\text{ctrl}}$.

Hinweise: - Die Kontrollgröße stammt aus einem anderen Teil des Netzwerks.

- Ideale Modelle haben ggf. Null- bzw. Unendlich-Widerstände am Ausgang, je nach Typ.

(4) Ersatzquellen (Thevenin/Norton).

Jedes lineare Zwei-Port-Netzwerk kann aus Sicht zweier Klemmen durch äquivalente Spannungsbzw. Stromquellen ersetzt werden.

Thevenin-Äquivalent: - $V_{\rm th}$ in Serie mit $R_{\rm th}$. $V_{\rm th} = V_{\rm OC}$, $R_{\rm th} = R_{\rm eq}$ (Quelle ausgeschaltet).

Norton-Äquivalent: - I_N in Parallel mit R_{th} .

$$I_N = \frac{V_{\rm th}}{R_{\rm th}}, \quad R_{\rm th} = R_{\rm eq}.$$

1

Quelltransformationen: - Spannungsquelle V_s in Serie mit $R_s <->$ Stromquelle I_s in Parallelschaltung mit R_s mit

$$I_s = \frac{V_s}{R_s}, \quad R_{\text{Par}} = R_s.$$

- Umgekehrt: Norton zu Thevenin mit denselben Werten.

Vorgehen zur Thevenin-Bestimmung: 1) Offene Schaltung messen: Bestimme $V_{\rm OC} = V_{\rm th}$.

- 2) Kurzschluss oder Quelle ausmachen: Bestimme $R_{\rm th}$ durch Auslöschung der unabhängigen Quellen und Messung des Widerstands.
- 3) Optional: Norton-Äquivalent: $I_N = V_{\rm th}/R_{\rm th}$.

Beispiel: - Eine Spannungsquelle $12\,\mathrm{V}$ in Serie mit $4\,\Omega$ ist äquivalent zu Norton mit

$$I_N = \frac{12}{4} = 3 \,\mathrm{A}, \quad R_{\mathrm{th}} = 4 \,\Omega.$$

Zusammenfassung (Schlüsselempfehlungen): - Spannungsquellen liefern eine definierte Spannung, oft mit Innenwiderstand.

- Stromquellen liefern einen definierten Strom, oft mit Parallelimpedanz.
- Gesteuerte Quellen erweitern das Netz durch Abhängigkeiten von Signalen aus dem Netz.
- Ersatzquellen ermöglichen vereinfachte Analysen durch Thevenin/Norton-Modelle.
- Transformationsregeln gelten auch bei zwei-terminalen Netzen; prüfe, ob unabhängige Quellen deaktiviert werden müssen, um $R_{\rm th}$ zu bestimmen.