Lernzettel

Maschenstromverfahren und Knotenpotenzialverfahren

Universität: Technische Universität Berlin

Kurs/Modul: Elektrische Netzwerke Erstellungsdatum: September 20, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Elektrische Netzwerke

Lernzettel: Maschenstromverfahren und Knotenpotenzialverfahren

(1) Grundidee und Begriffe.

Das Maschenstromverfahren (Mesh Analysis) verwendet Maschenströme I_k als Unbekannte und basiert auf der KVL (Kirchhoff's Voltage Law) in jedem Maschen zu einem linearen Gleichungssystem.

Das Knotenpotenzialverfahren (Node-Voltage Method) nutzt Knotenspannungen V_i relativ zum Referenzknoten und basiert auf der KCL (Kirchhoff's Current Law) an den Knoten.

Beide Verfahren liefern Gleichungssysteme, aus denen Ströme und Spannungen im Netzwerk bestimmt werden können.

(2) Maschenstromverfahren.

Vorgehen:

- ullet Zunächst unabhängige Maschen identifizieren und Maschenströme I_1, I_2, \dots definieren.
- Für jede Masche KVL ansetzen (Summe der Spannungen um die Masche gleich Null).
- Abhängige Spannungen durch gemeinsame Widerstände berücksichtigen, d.d.h. $R_m(I_m I_n)$ für gemeinsame Widerstände.
- Gleichungssystem lösen, danach Ströme in einzelnen Bauteilen bestimmen.

Beispiel (Maschenstrom).

Gegebenes Netzwerk: zwei Maschen mit gemeinsamen Widerstand R_3 .

$$-V_s + R_1 I_1 + R_3 (I_1 - I_2) = 0$$
$$R_2 I_2 + R_3 (I_2 - I_1) = 0$$

Mit
$$V_s = 10 \ \Omega$$
, $R_1 = 4 \ \Omega$, $R_2 = 6 \ \Omega$, $R_3 = 5 \ \Omega$.

Lösungen (numerisch):

$$I_1 \approx 1.49 \text{ A}, \qquad I_2 \approx 0.68 \text{ A}$$

Strömung durch R_3 :

$$I_{R_3} = I_1 - I_2 \approx 0.81 \text{ A}$$

(3) Knotenpotenzialverfahren.

Vorgehen:

- Unbekannte Knotenspannungen V_i relativ zum Referenzknoten festlegen.
- Für jeden nicht-Referenzknoten KCL anwenden:

$$\sum \frac{V_i - V_j}{R_{ij}} + (\text{Quellstr\"ome zu } i) = 0$$

- Bei Spannungsquellen zwischen Knoten ggf. Superknoten verwenden.
- Gleichungssystem lösen, Spannungen an allen Knoten erhalten.

Beispiel (Knotenpotenzial).

Wird zwischen zwei Knoten eine Spannung V_s durch eine ideale Spannungsquelle festgelegt und zwei Widerstände R_1 bzw. R_2 verbinden die Knoten jeweils zu Masse, gilt

$$V_a - V_b = V_s,$$

$$\frac{V_a}{R_1} + \frac{V_b}{R_2} = 0.$$

Zahlenbeispiel:

$$V_s = 10 \text{ V}, \ R_1 = 4 \ \Omega, \ R_2 = 6 \ \Omega.$$

Lösungen:

$$V_b = -6 \text{ V}, \qquad V_a = V_b + V_s = 4 \text{ V}.$$

Ströme über die Widerstände:

$$I_{R_1} = \frac{V_a}{R_1} = 1 \text{ A}, \qquad I_{R_2} = \frac{V_b}{R_2} = -1 \text{ A}.$$

(4) Wahl des Verfahrens und Hinweise.

- Maschenstrom ist oft einfach bei netzwerkbildenden Schleifen mit wenigen oder gleichen Widerständen.
- Knotenpotenzial eignet sich gut, wenn viele Knoten beteiligt sind oder Auftreten von Spannungsquellen zentral ist.
- Bei Netzen mit vielen Quellen oder komplexen Netzformen kann das eine Verfahren dem anderen bevorzugt sein.

(5) Anwendungen und Weiterführendes.

- Ersatzschaltungen (Thevenin/Norton) mittels Maschen- oder Knotenanalyse ableiten.
- Frequenzverhalten und Transienten mithilfe von Laplace-Transformationen anwenden.
- SPICE- und MATLAB-Simulationen zur Validierung verwenden.