Lernzettel

Zweitordgleichungen, Übertragungsfunktionen und Frequenzverhalten von Zweitoren; Bodendiagramme

Universität: Technische Universität Berlin

Kurs/Modul: Elektrische Netzwerke **Erstellungsdatum:** September 20, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study.AllWeCanLearn.com

Elektrische Netzwerke

Lernzettel: Zweitoren, Übertragungsfunktionen und Frequenzverhalten von Zweitoren; Bodendiagramme

(1) Grundlagen zu Zweitordgleichungen

Zweitordgleichungen ergeben sich aus linearen Netzwerken mit Bauteilen der Ordnung 2 (z. B. L, C, R in Kombination). Die allgemeine Zustandsgleichung hat die Form

$$\frac{d^2x}{dt^2} + \frac{\omega_0}{Q}\frac{dx}{dt} + \omega_0^2 x = K u(t),$$

mit

$$\omega_0 = \frac{1}{\sqrt{LC}}, \qquad Q = \frac{\sqrt{L/C}}{R}$$

fuer serielles RLC-Gliedersystem (Bezug zur Eingangsgröße u(t) und Ausgangsgröße x(t)).

Die Luftlinie oben liefert eine standardisierte Darstellung eines linearen, zeitinvarianten Zweitordsystems; für konkrete Netzwerke ergeben sich die konkreten Koeffizienten entsprechend der Schaltungsanordnung.

(2) Übertragungsfunktionen von Zweitoren

Für ein lineares, zeitinvariantes Zwei-Port-Netzwerk gilt die Transferfunktion

$$H(s) = \frac{Y(s)}{U(s)} = \frac{N(s)}{D(s)},$$

wobei D(s) typischerweise ein quadratischer Polynomausdruck ist. Im Standardfall eines einfachen, dissipativen Zweitordglieds (z.B. seriell RLC mit Ausgang am Ausgangsknoten) findet sich eine Low-Pass-Form

$$H(s) = \frac{\omega_0^2}{s^2 + \frac{\omega_0}{Q}s + \omega_0^2}.$$

Hierzu gilt

$$\omega_0 = \frac{1}{\sqrt{LC}}, \qquad Q = \frac{\sqrt{L/C}}{R}.$$

(3) Frequenzverhalten und Bodendiagramme

Setze in H(s) s=j:

$$H(j\omega) = \frac{\omega_0^2}{-\omega^2 + j\frac{\omega_0}{O}\omega + \omega_0^2}.$$

Es gilt:

$$|H(j\omega)| = \frac{\omega_0^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + \left(\frac{\omega_0}{Q}\omega\right)^2}}$$

und

$$\angle H(j\omega) = -\arctan\left(\frac{(\omega_0/Q)\,\omega}{\omega_0^2 - \omega^2}\right).$$

Hinweis zur Bedeutung:

- Für 0 ist |H(j)| annähernd konstant (DC-Gain 1 bei der oben dargestellten Normalform).
- Bei 0 zeigt sich eine maximale Resonanz je nach Q.
- Für 0 fällt der Betrag wie 1/2ab.

(4) Bodendiagramm eines Zweitordsystems

- Betrag in dB: $20 \log 10 |H(j)|$.
- Phase: H(j) in Grad oder Bogenmaß.
- Typische Merkmale: DC-Gain, Resonanzpeaks bei 0 (abhängig von Q), Abklingverhalten bei hohen Frequenzen.
- Praktischer Aufbau: Bestimme 0 und Q aus L, C und R.
- Trage die Formeln für |H(j)| und H(j) über einen Frequenzbereich von $_minbis_maxauf$.
- Zeichnegegebenen fallseine Referenzlinie (z. B.0dBbeiDC).

(5) Beispiel: Serieller RLC-Glied mit Ausgang am Kondensator

Gegeben: L = 0.1 H, C = $1.0 \times 10^{-4} F$, R = 6.32.

Berechne0, QundformuliereH(s).

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{0.1 \times 1 \times 10^{-4}}} = \frac{1}{\sqrt{1 \times 10^{-5}}} \approx 316.23 \text{ rad/s}.$$

$$Q = \frac{\sqrt{L/C}}{R} = \frac{\sqrt{0.1/1 \times 10^{-4}}}{6.32} = \frac{\sqrt{1000}}{6.32} \approx \frac{31.62}{6.32} \approx 5.0.$$

Die Transferfunktion (Ausgang über Kondensator) liegt in der Nullstelle:

$$H(s) = \frac{\omega_0^2}{s^2 + \frac{\omega_0}{Q}s + \omega_0^2} \quad \Rightarrow \quad H(s) = \frac{(316.23)^2}{s^2 + \frac{316.23}{5}s + (316.23)^2}.$$

Zugehörige Werte:

$$\omega_0^2 \approx 1.0 \times 10^5, \quad \frac{\omega_0}{Q} \approx 63.246.$$

(6) Bemerkungen und Anwendungsbeispiele

- Zweitorige Netzwerke werden oft durch n-Pol-Modelle, Streuparameter (Vierpole) und Ersatzschaltungen beschrieben.
- Die Übertragungsfunktion dient zur Vorhersage des Frequenzverhaltens, z. B. bei Filterentwürfen in der Netzwerkanalyse.
- SPICE- und MATLAB-Simulationen verwenden solche Modelle zur schnellen Approximation realer Netzwerke.

Hinweis zur Nachhaltigkeit und Normen

Die Netzwerkanalyse dient der sicheren und effizienten Auslegung von Energieverteilernetzen. Berücksichtige bei Entwurf und Simulation Umweltaspekte und Normen (Sicherheits- und Vorschriftenkonformität), um umweltfreundliche und sichere Netze der Energieversorgung zu fördern.