Lernzettel

Stationäre Magnetfelder: Durchflutungssatz, Induktivität, Permeabilität, magnetische Kreise

Universität: Technische Universität Berlin

Kurs/Modul: Grundlagen der Elektrotechnik (GLET)

Erstellungsdatum: September 20, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Grundlagen der Elektrotechnik (GLET)

Lernzettel: Stationäre Magnetfelder – Durchflutungssatz, Induktivität, Permeabilität, magnetische Kreise

(1) Grundbegriffe und Größen

Magnetische Größen treten in zwei Bezugsfeldern auf: dem magnetischen Feldstärkevektor \mathbf{H} (Einheit A/m) und dem magnetischen Flussdichtvektor \mathbf{B} (Einheit $\mathbf{T} = \mathbf{V}\mathbf{s}/\mathbf{m}^2$). $Der Zusammenhangist \mathbf{B} = \mu \mathbf{H}$, wobei

$$\mu = \mu_0 \, \mu_r$$
 und $\mu_0 = 4\pi \times 10^{-7} \, \text{H m}^{-1}$.

Der Begriff der Permeabilität μ beschreibt, wie stark ein Material das magnetische Feld durchläßt. Für einen definerten Querschnitt A gilt bei gleichmäßigem Feld

$$\Phi = \int_A \mathbf{B} \cdot d\mathbf{A} = B A,$$

der magnetische Fluss Φ (Einheit Wb). Die Reluktanz eines Materials entspricht dem Widerstand gegen den Fluss:

$$R_m = \frac{l}{\mu A},$$

mit der Weglänge l des magnetischen Pfades.

(2) Durchflutungssatz (Ampères Gesetz im Magnetfeld)

Der Magnetfluss erfüllt die magnetische Analogie zum elektrischen Netz:

$$\oint_{\mathcal{C}} \mathbf{H} \cdot d\boldsymbol{\ell} = I_{\text{enc}},$$

dabei ist I_{enc} die eingeschlossene Stromstärke. Im einfachsten Fall mit konstanter H längs des Weges erhält man

$$H = \frac{I_{\text{enc}}}{\ell}.$$

(3) Induktivität

Für eine Spule mit N Windungen, Kern mit konstanter Materialeigenschaft und Länge l sowie Querschnittsfläche A gilt bei annähernder Gleichverteilung von \mathbf{H} und \mathbf{B} :

$$H = \frac{NI}{l},$$

$$B = \mu H$$
,

$$\Phi = BA = \mu \, \frac{NI}{l} \, A.$$

Die Induktivität ist definiert durch

$$L = \frac{N \Phi}{I},$$

daraus folgt

$$L = \frac{\mu N^2 A}{I}.$$

(4) Induktionsgesetz und Energie im Magnetfeld

Induktion bei Zeitänderung des Flusses:

$$\mathcal{E} = -N \frac{d\Phi}{dt}.$$

Die gespeicherte magnetische Energie in einer Spule lautet

$$W = \frac{1}{2} L I^2.$$

(5) Permeabilität, Materialkennwerte

- Die effektive Permeabilität eines Materials ist $\mu = \mu_0 \mu_r$.
- Für ideale Materialien gilt oft eine lineare Beziehung $\mathbf{B} = \mu \mathbf{H}$ bis zur Sättigung; reale Materialien zeigen Abweichungen (Hysterese, Sättigung).
- Reluktanz als magnetischer Widerstand: $R_m = \frac{l}{\mu A}$.
- Zusammenhang Fluss und MMF: $\Phi = \frac{F_m}{R_m}$ mit $F_m = NI$ (Magnetomotive Force).

(6) Magnetische Kreise (analogie zu elektrischen Kreisen)

- Reluktanznetzwerke verhalten sich wie Widerstandskreise im elektrischen Fall: Serie und Parallel.

- Serienreluktanzen: $R_{m,\text{eq}} = \sum R_m$. Parallele Reluktanzen: $\frac{1}{R_{m,\text{eq}}} = \sum \frac{1}{R_{m,i}}$. Gesamtfluss durch eine Schleife: $\Phi = \frac{F_m}{R_{m,\text{eq}}}$ mit $F_m = NI$. Kopplung von zwei Spulen: Mutuelle Induktivität M und Kopplungskoeffizient k:

$$M = k\sqrt{L_1L_2}, \qquad 0 \le k \le 1.$$

- Energie bei gekoppelten Spulen:

$$W = \frac{1}{2} \left(L_1 I_1^2 + L_2 I_2^2 + 2M I_1 I_2 \right).$$

(7) Beispielrechnung: einfache Magnetkreis-Referenz

Gegeben: Kernquerschnitt $A = 2 \times 10^{-4} \text{ m}^2$, Länge l = 0.40 m, Windungen N = 120, relative Permeabilität $\mu_r = 800$, Strom I = 3 A.

- Berechne μ :

$$\mu = \mu_0 \, \mu_r = (4\pi \times 10^{-7}) \times 800 \, \, \mathrm{H \, m^{-1}} \approx 1.005 \times 10^{-3} \, \, \mathrm{H \, m^{-1}}.$$

- Bestimme H an der Kernlänge:

$$H = \frac{NI}{l} = \frac{120 \times 3}{0.40} = 900 \text{ A m}^{-1}.$$

- Bestimme B:

$$B = \mu H \approx (1.005 \times 10^{-3}) \times 900 \approx 0.904 \text{ T}.$$

- Fluss Φ :

$$\Phi = BA \approx 0.904 \times 2 \times 10^{-4} \approx 1.81 \times 10^{-4} \text{ Wb.}$$

- Induktivität *L*:

$$L = \frac{N\Phi}{I} = \frac{120 \times 1.81 \times 10^{-4}}{3} \approx 7.26 \times 10^{-3} \text{ H}.$$

Hinweise zur Praxis

- Bei Nichtlinearität (Sättigung) gilt $\mathbf{B} = \mu(\mathbf{H}) \mathbf{H}$ als nicht konstant; es wird eine B-H-Charakteristik benötigt.
- Bei wechselnden Feldern tritt zusätzlich die Wirbelstromverluste und Hysterese auf; dies ist relevant bei Generatorprinzip, Drehstromsystemen, Übertragern.

Wichtige Formeln zum schnellen Nachschlagen

$$\mathbf{B} = \mu \mathbf{H}$$

$$\mu = \mu_0 \, \mu_r$$

$$\mu_0 = 4\pi \times 10^{-7} \, \mathrm{H \, m^{-1}}$$

$$\Phi = BA$$

$$R_m = \frac{l}{\mu A}$$

$$H = \frac{NI}{l}$$

$$L = \frac{\mu N^2 A}{l}$$

$$\mathcal{E} = -N \, \frac{d\Phi}{dt}$$

$$W = \frac{1}{2}LI^2$$

$$\Phi = \frac{F_m}{R_m}, \quad F_m = NI$$

$$M = k \sqrt{L_1 L_2}$$

$$W = \frac{1}{2} \left(L_1 I_1^2 + L_2 I_2^2 + 2M I_1 I_2 \right)$$