Lernzettel

Induktion und zeitlich veränderliche Magnetfelder: Induktivität, Induktionsgesetz, Selbstinduktion

Universität: Technische Universität Berlin

Kurs/Modul: Grundlagen der Elektrotechnik (GLET)

Erstellungsdatum: September 20, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study.AllWeCanLearn.com

Grundlagen der Elektrotechnik (GLET)

Lernzettel: Induktion und zeitlich veränderliche Magnetfelder

(1) Induktivität (L).

Die Induktivität beschreibt, wie stark ein Strom ein Magnetfeld erzeugt bzw. wie stark ein sich änderndes Magnetfeld eine Gegenwirkung erzeugt. Die Fluxlinkage ist durch

$$\lambda = LI$$

gegeben.

$$\lambda = N \Phi_B$$

wobei

$$\Phi_B = \int_A \mathbf{B} \cdot d\mathbf{A}$$

Die Induktivität ergibt sich als

$$L = \frac{\lambda}{I}$$

Der induzierte EMF (Gegen-EMF) ergibt sich aus

$$\mathcal{E} = -\frac{d\lambda}{dt}$$

Bei konstanter Induktivität gilt

$$\mathcal{E} = -L \, \frac{dI}{dt}$$

Die gespeicherte magnetische Energie in einer Induktivität ist

$$W = \frac{1}{2}LI^2$$

(2) Induktionsgesetz.

Das Induktionsgesetz beschreibt die Entstehung einer elektromotorischen Kraft durch zeitliche Veränderungen des magnetischen Flusses:

$$\mathcal{E} = -\frac{d\Phi_B}{dt}$$

Der magnetische Fluss wird durch

$$\Phi_B = \int_{A} \mathbf{B} \cdot d\mathbf{A}$$

definiert.

In der Feldgleichung wird das elektrische Feld durch die zeitabhängige magnetische Veränderung beschrieben:

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

(3) Selbstinduktion.

Die Selbstinduktion beschreibt, dass der eigene Strom durch eine Induktivität eine Gegen-EMF erzeugt:

$$\mathcal{E}_{\text{self}} = -\frac{d\lambda}{dt}$$

Für konstante L gilt

$$\mathcal{E}_{\text{self}} = -L \frac{dI}{dt}$$

und damit

$$\mathcal{E}_{\text{self}} = -\frac{d}{dt}(L\,I)$$

(4) Anwendungen: Serien- und Parallelschaltungen von Induktivitäten; Energie.

Serienverschaltung (linear
$$L_i$$
): $L_{\text{eq, series}} = L_1 + L_2 + \cdots + L_n$
Parallelschaltung (linear L_i): $\frac{1}{L_{\text{eq, parallel}}} = \frac{1}{L_1} + \frac{1}{L_2} + \cdots + \frac{1}{L_n}$
Alternative Darstellung: die Energie bleibt

$$W = \frac{1}{2}LI^2$$