Lernzettel

Numerische Umsetzung, Inversionstechniken und Fehler-/Stabilitätsanalysen bei Transformationsmethoden (FFT, Diskretisierung)

Universität: Technische Universität Berlin

Kurs/Modul: Integraltransformationen und partielle Differentialgleichungen für Ingenieurwissens

Erstellungsdatum: September 20, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Integraltransformationen und partielle Differentialgleichungen für Ingenieurwissenschaften

Lernzettel: Numerische Umsetzung, Inversionstechniken und Fehler-/Stabilitätsanalysen bei Transformationsmethoden (FFT, Diskretisierung)

(1) Numerische Umsetzung von Transformationsmethoden.

Die schnelle Transformation nutzt die Diskrete Fourier-Transformation (DFT) bzw. die Fast-Fourier-Transformation (FFT) zur effizienten Berechnung der Fourier-Bilder. Für eine Sequenz der Länge N gilt die DFT:

$$X_k = \sum_{n=0}^{N-1} x_n e^{-i 2\pi kn/N}, \quad k = 0, 1, \dots, N-1.$$

Die skalierte Inverse DFT ist

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{i 2\pi kn/N}, \quad n = 0, 1, \dots, N-1.$$

Die FFT reduziert die Komplexität von $O(N^2)$ auf $O(N \log N)$ und eignet sich besonders für große Signale. Die DFT/DIFT gehen ineinander über, indem man die Vorzeichen der Exponenten bzw. die Normierung wechselt.

(2) Inversionstechniken und Regularisierung.

Gegeben sei ein lineares Modell in der Frequenzdomäne:

$$Y(\omega) = H(\omega) X(\omega) + N(\omega),$$

wobei $H(\omega)$ das Übertragungsfunktion eines Systems ist und $N(\omega)$ Rauschen darstellt.

Direkte Inversion (unstabil, falls $H(\omega)$ nahe Null ist):

$$\hat{X}(\omega) = \frac{Y(\omega)}{H(\omega)}.$$

Regularisierte Inversion (Rauschunterdrückung, stabiler):

$$\hat{X}(\omega) = \frac{H^*(\omega)}{|H(\omega)|^2 + \lambda} Y(\omega),$$

mit $\lambda > 0$ als Regularisierungsparameter.

Tikhonov-Regularisierung (Zeit-/Raumdomäne):

$$\min_{x} \|y - h * x\|_{2}^{2} + \lambda \|Lx\|_{2}^{2},$$

wobei L eine geeignete Regularisierungsmatrix ist.

Wiener-Filter (optimales lineares Filtern bei Gausschem Rauschen):

$$\hat{X}(\omega) = W(\omega) Y(\omega), \qquad W(\omega) = \frac{S_{XX}(\omega) H^*(\omega)}{|H(\omega)|^2 S_{XX}(\omega) + S_{NN}(\omega)},$$

wobei S_{XX}, S_{NN} die spektralen Dichten von Signal bzw. Rauschen sind.

(3) Fehler-/Stabilitätsanalysen.

Ursachen von Fehlern bei Transformationsmethoden: - Diskretisierungsfehler durch endliche Diskretisierungsschritte Δx bzw. Δt .

- Quantisierungs- bzw. Rundungsfehler bei Gleitkommazahlen.
- Rauschfehler aus Messungen bzw. Modellunsicherheiten. Aliasing durch undersampling (Nyquist-Kriterium).

Kleine Änderungen in den Eingangsdaten δy erzeugen oft vergrößerte Änderungen in der Lösung δx bei schlechter Kondition:

$$\|\delta x\| \le \kappa \|\delta y\|,$$

wobei $\kappa = \operatorname{cond}(\mathcal{F})$ der Konditionsparameter der Transformation ist. Eine hohe Kondition deutet auf eine potenziell instabile Inversion hin.

Gibbs-Phänomen: Bei Fourier-Reihen nähert sich der Summenbereich diskreten Sprüngen nahe Trennstellen, es entstehen Überschwinger, die bei höherer Ordnung langsamer abklingen. Numerische Gegenmaßnahmen sind Fensterfunktionen bzw. Regularisierung.

(4) Diskretisierung, Abtastung und Padding.

Diskretisierung in Zeit- oder Raum: Sampling-Theorem besagt,

$$f_s \geq 2 f_{\text{max}}$$

damit kein aliasing auftritt. Die Nyquist-Frequenz ist

$$f_N = \frac{f_s}{2}.$$

Zero-Padding vor der FFT erhöht die Frequenzauflösung und hilft bei der Abbildung konstanter oder glatter Signale:

$$x_p[n] = \begin{cases} x[n], & 0 \le n \le N-1, \\ 0, & N \le n < L, \end{cases} \quad L \ge N + M - 1 \quad \text{(bei } y = x * h, \text{ Lenkung: lineare Konvolution)}.$$

Durch Padding von Vektoren x und h auf Länge L erhält man über die FFT eine lineare Konvolution:

$$DFT_L\{x_p\} \cdot DFT_L\{h_p\} \xrightarrow{IDFT} x * h.$$

Fensterung (windowing) reduziert spektrale Leakage:

$$x_w[n] = w[n] x[n], \quad n = 0, \dots, N-1,$$

mit typischen Fensterfunktionen (Hann, Hamming, Blackman).

(5) Praktische Hinweise und Beispiele.

- Bei der Inversion von linearen Modellen $y = h^*x + n$ empfiehlt sich Regularisierung, um die

Empfindlichkeit gegenüber Rauschen zu verringern.

- Die Wahl des Regularisierungsparameters λ beeinflusst Bias und Varianz der Lösung; oft mittels Kreuzvalidierung oder L- curve gewählt.
- Beispiel (Diskrete Fourier-Inversion mit Regularisierung):

$$\hat{X}(\omega) = \frac{H^*(\omega)}{|H(\omega)|^2 + \lambda} Y(\omega) \implies \hat{x} = \text{IDFT}\{\hat{X}(\omega)\}.$$

- Beispiel (Zeit- bzw. Raumdomänen-Dekonvolution mit Tikhonov):

$$\min_{\boldsymbol{x}} \|\boldsymbol{y} - \boldsymbol{h} * \boldsymbol{x}\|_2^2 + \lambda \|\boldsymbol{L}\boldsymbol{x}\|_2^2 \quad \to \quad \hat{\boldsymbol{x}} = \text{LS-(h, y, \lambda, L)}.$$

- Praktische Regel: vor der Inversion stets prüfen, ob das Spektrum von $H(\omega)$ konsistent ist und ob Rauschen dominierend ist; ansonsten Windowing und/oder Regularisierung verwenden.

(6) Kleines Rechenbeispiel (konzeptionell).

Gegeben sei ein Signal x=[1,2,3,4] und eine Impulsantwort h=[0.5,1.0,0.5]. Die lineare Konvolution y=x*h kann durch FFT-basiertes Verfahren berechnet werden. Zur Stabilisierung der Inversion wählt man eine Regularisierung $\lambda>0$ und verwendet den Wiener-Filter bzw. Tikhonov-Regelung in der Frequenzdomäne, bevor man wieder ins Zeit-/Raumdomänenbild transformiert.