Lernzettel

Energie und Ressourcen - Einführung

Universität: Technische Universität Berlin

Kurs/Modul: Energie und Ressourcen - Einführung

Erstellungsdatum: September 20, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Energie und Ressourcen - Einführung

Lernzettel: Energie und Ressourcen - Einführung

- (1) Geologische Grundlagen und Ressourcenquellen. Energiequellen lassen sich nach ihrer geologischen Verfügbarkeit und Form der Förderung unterscheiden.
 - Geologische Grundlagen: Lagerstätten, Verteilung global/regional, Reserven vs. Ressourcen.
 - Primärenergieträger: fossile Energiestoffe (Kohle, Öl, Erdgas), erneuerbare Quellen (Sonne, Wind, Wasser, Biomasse), Kernenergie (Uran).
 - Endenergiebedarf und Versorgungssicherheit hängen von Geologie, Technik und Marktstrukturen ab.
- (2) Primär- und Sekundärenergie. Primärenergiequellen liefern Energie vor jeder Umwandlung. Sekundärenergie ist Energie, die durch Umwandlungen bereitgestellt wird (z. B. Strom, Wärme aus Erdgas).

$$E_{\rm End} = \eta_{\rm Umwandlung} E_{\rm Prim\"{a}r}$$

- (3) Technische Grundlagen der Ressourcenförderung.
 - Exploration und Erkundung: geologische Modelle, seismische Verfahren, Probebohrungen.
 - Förderung: Bohrtechnik, Fördersysteme, Transport zur Weiterverarbeitung.
 - Umwelt- und Rechtsrahmen: Genehmigungen, Umweltverträglichkeit, Recyclingansätze.
- (4) Umwandlungsschritte: Konventionelle und erneuerbare Energien. Von Primärenergie zu Sekundärenergie bis zum Endverbrauch.
 - Konventionelle Energien: fossile Kraftwerke, Öl- und Gasanlagen, Kohlekraftwerke.
 - Erneuerbare Energien: Sonnen-, Wind-, Wasserkraft, Biomasse, Geothermie.

$$\eta_{\text{System}} = \frac{E_{\text{Nutz}}}{E_{\text{Primär}}}$$

- (5) Verteilung von Energie und Ressourcen bis zum Endkunden.
 - Netze: Elektrizitätsnetz, Gasnetz, Öl- und Mineralöltransport.
 - Märkte: Beschaffung, Preisbildung, Regulierung, Versorgungssicherheit.
- (6) Nachhaltigkeit, Umwelt und Gesellschaft. Lebenszyklusbetrachtung, Emissionen, Ressourceneffizienz, Kreislaufwirtschaft.

LCOE =
$$\frac{\sum_{t=1}^{N} \frac{C_t}{(1+r)^t}}{\sum_{t=1}^{N} \frac{E_t}{(1+r)^t}}$$

(7) Ingenieurwissenschaftliche Grundlagen – Rechen- und Übungsansätze. Beispielgrößen zur Orientierung:

- Energieeffizienz eines Systems: $\eta = \frac{E_{\text{Nutz}}}{E_{\text{Primär}}}$.
- \bullet Ressourcennutzung pro Wertschöpfung: $I=\frac{R}{B}$ mit RRohstoffverbrauch und BBruttoinlandsprodukt.
- (8) Notizen zu Rechenbeispielen und Gruppenübungen. Achtung: In Übungen werden konkrete technische Prozesse modelliert, Rechenwege transparent dargestellt und Ergebnisse diskutiert.