Lernzettel

Energiesysteme, Netze und Speicherung: Verteilung vom Primärstoff bis Endverbraucher

Universität: Technische Universität Berlin

Kurs/Modul: Energie und Ressourcen - Einführung

Erstellungsdatum: September 20, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Energie und Ressourcen - Einführung

Lernzettel: Energie und Ressourcen – Einführung

- (1) Ziel und Überblick. Ziel dieses Abschnitts ist ein Verständnis der Struktur von Energiesystemen: von der Gewinnung der Primärstoffe, über Umwandlungs- und Übertragungsschritte, bis zur Bereitstellung von Energie und Ressourcen für Endverbraucher. Wichtige Aspekte sind Versorgungssicherheit, Netzstabilität, Effizienz und Umweltaspekte.
- (2) Primärstofffluss von der Quelle zum Endverbraucher. Der typische Fluss umfasst:
 - Gewinnung und Aufbereitung der Primärstoffe;
 - Umwandlung in nutzbare Energie (Elektrizität, Wärme);
 - Transport und Verteilung über Hoch- und Mittelspannungsnetze bzw. Verteilnetze;
 - Einspeisung ins Endverbrauchernetz und Nutzung durch Endgeräte.
- (3) Energiesysteme und Netze. Wichtige Bausteine:
 - Erzeugung: konventionell (Kohle, Öl, Gas, Kernenergie) und erneuerbare (Wind, Solar, Wasserkraft, Biomasse).
 - Netze: Übertragung (Großnetze) und Verteilung (Nieder- bis Mittelspannungsnetze).
 - Speichertechnologien unterstützen Netzstabilität durch zeitliche Verschiebung von Energiefluss.
- (4) Verteilung vom Primärstoff bis Endverbraucher. Verteilung umfasst:
 - Netzbetrieb, Lastflussmanagement, Netzzugang und Netzkapazität;
 - Balance von Erzeugung und Verbrauch (Spitzenlasten, Uberschüsse);
 - Verbrauchsprofile, Demand Side Management, Netzausbau.
- (5) Speicherung und Speichertechnologien. Speicherung dient der Glättung von Lasten, Bereitstellung von Reserve und Integration erneuerbarer Quellen:
 - Batteriespeicher (Li-Ion, Festkörperbatterien);
 - Pumpspeicherkraftwerke (PSW);
 - Power-to-X und chemische Speicher.
- (6) Kennzahlen und wirtschaftliche Aspekte. Beispiele:
 - Wirkungsgrad und Verlustleistungen in den Netzen;
 - LCOE (Levelized Cost of Energy) für verschiedene Technologien;
 - Netzkapazität vs. Lastprofil und Auslastungsgrad.

(7) Beispielrechnung – Netto-Endverbraucherleistung. Für eine einfache Grobabschätzung gilt:

$$P_{\rm End} = P_{\rm Prim} \cdot \eta_{\rm conv} \cdot \eta_{\rm trans} \cdot \eta_{\rm dist},$$

mit typischen Wirkungsgraden $\eta_{\rm conv}=0.92,\,\eta_{\rm trans}=0.98,\,\eta_{\rm dist}=0.96.$ Beispiel: Gegeben $P_{\rm Prim}=1000\,{\rm MW},$

$$P_{\rm End} \approx 1000 \times 0.92 \times 0.98 \times 0.96 \approx 8.66 \times 10^2 \,\rm MW.$$