Lernzettel

Nachhaltigkeit, Lebenszyklusanalysen und Umweltbilanzen

Universität: Technische Universität Berlin

Kurs/Modul: Energie und Ressourcen - Einführung

Erstellungsdatum: September 20, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Energie und Ressourcen - Einführung

Lernzettel: Nachhaltigkeit, Lebenszyklusanalysen und Umweltbilanzen

(1) Zielsetzung und zentrale Begriffe.

Nachhaltigkeit bedeutet, Bedürfnisse der Gegenwart zu befriedigen, ohne die Fähigkeit künftiger Generationen zu gefährden. In der Energie- und Ressourcenwirtschaft wird dies durch drei Dimensionen sichtbar: Umwelt, Soziales und Wirtschaft (Triple Bottom Line). Eine Umweltbilanz erfasst Umweltwirkungen eines Produkts bzw. Prozesses entlang dessen Lebensweg.

(2) Lebenszyklusanalysen (LCA).

Die Lebenszyklusanalytik bewertet Umweltwirkungen über den gesamten Lebenszyklus eines Produkts oder einer Dienstleistung. Typische Phasen der LCA sind:

- Zieldefinition und Umfang (Functional unit, Systemgrenzen)
- Sachbilanz (Life cycle inventory)
- Wirkungsabschätzung (Impact assessment)
- Interpretation (Iterative Bewertung der Ergebnisse)

(3) Umweltbilanzen.

Eine Umweltbilanz ist das Ergebnis einer strukturierten Betrachtung von Umweltwirkungen über den Lebensweg eines Produkts/Prozesses. Die LCA ist die methodische Vorgehensweise, um eine Umweltbilanz zu erstellen. Umweltbilanzen schließt oft neben ökologischen auch sozioökonomische Aspekte ein, wenn sie entsprechend erweitert werden.

(4) Systemgrenzen und Funktionseinheit.

Für eine aussagekräftige Umweltbilanz muss der Umfang (Systemgrenzen) klar definiert werden. Ebenso ist die Funktionseinheit (z. B. 1 kWh Energie, 1 Liter Getränk) festzulegen, damit Ergebnisse vergleichbar bleiben.

(5) Datengrundlagen und -qualität.

Datenquellen reichen von Prozessdaten aus der Industrie bis zu Datenbanken (z. B. Ecoinvent). Wichtige Kriterien sind Vollständigkeit, Repräsentativität, Aktualität, Transparenz und Unsicherheiten.

(6) Kennzahlen und Indikatoren.

Typische Größen in der Umweltbilanz:

- Treibhausgasemissionen in CO2-Äquivalenten (CO2e)
- Energiebedarf (z. B. cumulated energy demand, CED)
- Wasserverbrauch (Wasserfußabdruck)
- Rohstoffverknappung (Abiotische Depletion Potenziale, ADP)
- Übrige Emissionen (z. B. Eutrophikation, Ozonabbau)

(7) Standards und Normen.

Wichtige Rahmenwerke:

- ISO 14040/14044 zur Vorgehensweise von LCA
- ISO 14025 (Umweltlabels, PEF/OPL)
- ISO 14046 zur Wasser-Fußabdruckanalyse

(8) Rechenprinzipien und Beispielgleichungen.

Grundformel für die Umweltbelastung eines Systems:

$$E_{\text{gesamt}} = \sum_{k} q_k \cdot EF_k,$$

wobei

- q_k Menge des Flusses k (z. B. m^3 Wasser, kg Material, kWh Energie),
- EF_k Emissionsfaktor des Flusses k (z. B. kg CO2e pro m³ Wasser, kg CO2e pro kg Material).

(9) Praktische Anwendung in Energie und Ressourcen.

- In der Energieversorgung: LCA vergleicht konventionelle vs. erneuerbare Energien über deren Lebenszyklus.
- In der Rohstoffgewinnung: Umweltbilanzen helfen, Umweltbelastungen entlang der Förderkette zu verstehen.

(10) Beispiele – einfache Skizze.

Beispielhafte Herangehensweise zur Zieldefinition und Systemgrenze:

- Ziel: Vergleich von zwei Energiequellen über deren Lebensweg hinweg.
- Systemgrenze: Von Rohstoffgewinnung bis Endverbrauch.
- Funktionseinheit: 1 kWh nutzbare Energie.

(11) Fazit und Relevanz für den Kurs.

Nachhaltigkeit in der Energie- und Ressourcenwelt erfordert die systematische Erfassung von Umweltwirkungen über den gesamten Lebensweg; LCA bietet dabei eine transparente, vergleichbare Methode zur Entscheidungsunterstützung.