Lernzettel

Mechanik E

Universität: Technische Universität Berlin

Kurs/Modul: Mechanik E

Erstellungsdatum: September 20, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study.AllWeCanLearn.com

Mechanik E

Lernzettel: Mechanik E

(1) Grundlagen und Überblick.

Dieses Teilthema deckt zentrale Konzepte der Mechanik E ab: Kinematik, Kinetik, Statik, Elastostatik und Festigkeitslehre. Ziel ist, mathematische Werkzeuge anzuwenden, einfache mechanische Systeme zu analysieren und Festigkeitsnachweise zu führen.

(2) Mathematische Werkzeuge.

$$A \mathbf{x} = \mathbf{b}, \quad \mathbf{x} \in \mathbb{R}^n, \ A \in \mathbb{R}^{m \times n}, \ \mathbf{b} \in \mathbb{R}^m$$

- Lineare Gleichungssysteme lösen durch Eliminations- bzw. matrixbasierte Methoden.
- Vektorrechnung: Skalarprodukt

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

und Betrags- bzw. Richtung

$$\|\mathbf{a}\| = \sqrt{a_1^2 + a_2^2 + a_3^2}, \quad \frac{\mathbf{a}}{\|\mathbf{a}\|}$$
 ist die Einheitsrichtung

• Vektorprodukt (3D):

$$\mathbf{a} \times \mathbf{b} = (a_2b_3 - a_3b_2, \ a_3b_1 - a_1b_3, \ a_1b_2 - a_2b_1)$$

(3) Kinematik des Massepunkts.

$$\mathbf{v} = \frac{d\mathbf{r}}{dt}, \quad \mathbf{a} = \frac{d\mathbf{v}}{dt}$$

- Geschwindigkeit und Beschleunigung relativ zu einem Bezugssystem.
- Gleichförmige Bewegung: $\mathbf{a} = \mathbf{0}$; Gleichmäßig beschleunigte Bewegung: $\mathbf{a} = \text{const.}$

(4) Kinetik und Newtonsche Gesetze.

$$\sum \mathbf{F} = m \mathbf{a}, \qquad \sum \mathbf{M} = I \boldsymbol{\alpha}, \qquad \mathbf{L} = \mathbf{I} \boldsymbol{\omega}$$

- Translation: $\sum F_x = ma_x$, $\sum F_y = ma_y$ (2D) bzw. $\sum \mathbf{F} = m\mathbf{a}$ (3D).
- Rotation: $\sum \tau = I\alpha$ (einachsige Rotation), $\mathbf{L} = I\boldsymbol{\omega}$.

(5) Bewegung des starren Körpers und Momentanpol.

$$\mathbf{v}_P = \boldsymbol{\omega} \times \mathbf{r}_{P/O}$$

• Bei planarer Bewegung liegt der Schnellradius am Momentanpol: jede Punktbewegung verläuft um den Momentanpol mit einem bestimmten Winkel.

• Gleichung der Bewegung um eine feste Achse: $\mathbf{r}(t)$ dreht sich mit $\boldsymbol{\omega}$.

(6) Statik starrer Körper.

$$\sum \mathbf{F} = 0, \qquad \sum M = 0$$

- Gleichgewichtsbedingungen für Reaktionen, Schnitt- und Lasten.
- ullet Schwerpunkt/Schnittlasten: Lage des Schwerpunkts \vec{r}_S eines Körpers, freie-Flächendiagramme.
- Fachwerke: statisch bestimmte Systeme durch Gleichgewichtsbedingungen lösbar.

(7) Elastostatik.

- Hooke's ches Gesetz: $\sigma = E\,\varepsilon$
- Flächenträgheitsmoment (rechteckige Querschnitte):

$$I = \frac{1}{12}bh^3$$

• Biegung: Zusammenhang zwischen Biegemoment und Krümmung

$$M(x) = EI \kappa(x) = EI \frac{d^2v}{dx^2}$$

(8) Festigkeitslehre.

$$\sigma = \frac{My}{I}, \qquad \varepsilon = \frac{\sigma}{E}$$

- Biege- und Dehnung von Stäben; maximale Spannung an der äußeren Faser (y = h/2).
- Biegelinie/Durchbiegung: $EI\frac{d^2v}{dx^2} = M(x)$ bzw. $EI\frac{d^4v}{dx^4} = q(x)$ bei Lastverteilung q(x).
- Statisch unbestimmte Systeme: Lösung über Kraft-Verformungs- oder Verformungsmethode.