Lernzettel

Kinematik des Massepunkts: Bewegung, Geschwindigkeit, Beschleunigung

Universität: Technische Universität Berlin

Kurs/Modul: Mechanik EErstellungsdatum: September 20, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Mechanik E

Lernzettel: Kinematik des Massepunkts: Bewegung, Geschwindigkeit, Beschleunigung

(1) Grundbegriffe der Kinematik

Der Massepunkt bewegt sich in Raumrichtungen. Die Ortfunktion ist der Ort bzw. die Position

$$\mathbf{r}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} \in \mathbb{R}^3.$$

Die Geschwindigkeit ist die zeitliche Ableitung der Position

$$\mathbf{v}(t) = \frac{d\mathbf{r}}{dt} = \begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \\ \dot{z}(t) \end{pmatrix}.$$

Der Betrag der Geschwindigkeit (Geschwindigkeit, Skalar) ist

$$|\mathbf{v}(t)| = \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2 + \dot{z}(t)^2}.$$

Die Beschleunigung ist die zeitliche Ableitung der Geschwindigkeit

$$\mathbf{a}(t) = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{r}}{dt^2} = \begin{pmatrix} \ddot{x}(t) \\ \ddot{y}(t) \\ \ddot{z}(t) \end{pmatrix}.$$

Beide Größen können als Funktionen der Zeit interpretiert werden. Für die Bahn ist die zeitliche Änderung der Position maßgeblich (Weg, Bahnkurve).

(2) Geschwindigkeit und Beschleunigung als Ableitungen

$$\mathbf{v}(t) = \frac{d\mathbf{r}}{dt}, \quad \mathbf{a}(t) = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{r}}{dt^2}.$$

(3) Bewegung auf einer Geraden – gleichmäßig beschleunigte Bewegung (1D)

Bezeichnen wir die Richtung als x-Achse, mit s(t) als Vorgangslaufbahn entlang dieser Geraden und s0 als Anfangsposition:

$$s(t) = s_0 + v_0 t + \frac{1}{2} a t^2.$$

$$v(t) = v_0 + a t.$$

$$v^2 = v_0^2 + 2a(s - s_0).$$

Hinweis: Falls der Betrag der Beschleunigung konstant ist und in Richtung der Bewegung wirkt, gelten die obigen Gleichungen direkt.

(4) Bewegung im Raum bei konstanter Beschleunigung

Für eine konstant beschleunigte Bewegung gilt

$$\mathbf{r}(t) = \mathbf{r}_0 + \mathbf{v}_0 t + \frac{1}{2} \mathbf{a} t^2,$$

$$\mathbf{v}(t) = \mathbf{v}_0 + \mathbf{a} t,$$

 $\mathbf{a}(t) = \mathbf{a} = \text{konstant}.$

(5) Geschwindigkeit entlang einer Bahn; Tangential- und Normalbeschleunigung Die Geschwindigkeit als Bahngeschwindigkeit wird durch den Bogenmaßstab

$$v(t) = |\mathbf{v}(t)| = \left| \frac{d\mathbf{r}}{dt} \right|.$$

Die Beschleunigung lässt sich durch Zerlegung in Tangential- und Normalrichtung schreiben:

$$\mathbf{a} = a_T \,\hat{\mathbf{t}} + a_N \,\hat{\mathbf{n}},$$

mit

$$a_T = \frac{dv}{dt}, \quad a_N = \frac{v^2}{\rho},$$

wobei $\hat{\mathbf{t}} = \mathbf{v}/|\mathbf{v}|$ der Tangentialrichtungsvektor, $\hat{\mathbf{n}}$ der Normalrichtungsvektor und ρ der Krümmungsradius der Bahn ist. Die Gesamtabsolutbeschleunigung erfüllt

$$|\mathbf{a}|^2 = a_T^2 + a_N^2.$$

(6) Grundlegende Beziehungen zur Bahn und zum Weg

Der Weg entlang der Bahn ist durch die Bahngeschwindigkeit gegeben:

$$v = \frac{ds}{dt} = \left| \frac{d\mathbf{r}}{dt} \right|.$$

(7) Wichtige Formeln – kompakte Übersicht

$$\mathbf{r}(t) = \mathbf{r}_0 + \mathbf{v}_0 t + \frac{1}{2} \mathbf{a} t^2,$$

$$\mathbf{v}(t) = \mathbf{v}_0 + \mathbf{a} t,$$

$$\mathbf{a}(t) = \frac{d\mathbf{v}}{dt} = \frac{d^2 \mathbf{r}}{dt^2},$$

$$v = \left| \frac{d\mathbf{r}}{dt} \right|,$$

$$\mathbf{a} = a_T \,\hat{\mathbf{t}} + a_N \,\hat{\mathbf{n}}, \quad a_T = \frac{dv}{dt}, \quad a_N = \frac{v^2}{a}.$$

Zusammenfassung der Lernziele (Hinweis)

- Verstehen, dass Ort, Geschwindigkeit und Beschleunigung die zentralen kinematischen Größen sind und als Ableitungen zueinander stehen.
- Kennen der konstant-beschleunigten Gleichungen in 1D und deren Verallgemeinerung auf den Raum.
- Unterscheidung von Betrag und Vektor der Geschwindigkeit sowie der Zerlegung der Beschleunigung in tangentiale und normale Anteile.
- Anwendung der Grundgleichungen zur Beschreibung der Bewegung eines Massepunkts in Komfortund Ingenieursaufgaben.