Lernzettel

Schwerpunkt, Reaktions- und Schnittlasten sowie Fachwerke

Universität: Technische Universität Berlin

Kurs/Modul: Mechanik EErstellungsdatum: September 20, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Mechanik E

Lernzettel: Schwerpunkt, Reaktions- und Schnittlasten sowie Fachwerke

(1) Schwerpunkt. Der Schwerpunkt (Zentrum der Masse) eines Systems ist der Punkt, auf den die Wirkung der Gesamtmasse optisch vereinigt. Für diskrete Massen ergibt sich

$$\mathbf{r}_S = \frac{\sum_i m_i \, \mathbf{r}_i}{\sum_i m_i}, \qquad M = \sum_i m_i,$$

wobei $\mathbf{r}_i = (x_i, y_i)^{\top}$ die Lage der Masse m_i angibt. Bei einem kontinuierlichen Masseverteilungsobjekt gilt

$$\mathbf{r}_S = \frac{1}{M} \int \mathbf{r} \, \mathrm{d}m, \qquad M = \int \mathrm{d}m.$$

(2) Reaktionskräfte. Für das Gleichgewicht eines starren Körpers gelten die Gleichungen der Statik:

$$\sum F_x = 0, \qquad \sum F_y = 0, \qquad \sum M_O = 0.$$

Dabei ist $M_O = \sum (\mathbf{r}_i - \mathbf{O}) \times \mathbf{F}_i$ das Moment der äußeren Kräfte bezüglich eines Punktes \mathbf{O} . In Abhängigkeit von der Stützung hat man unterschiedliche Reaktionsgrößen:

- Stützpunkt mit zwei Reaktionsgrößen (Punktsattel): R_x , R_y .
- Stützpunkt mit einer Reaktionsgröße (Rolle): typischerweise eine horizontale oder vertikale Reaktionsgröße, je nach Orientierung.

Für eine Gegebenheit werden über $\sum F_x = 0$, $\sum F_y = 0$ und $\sum M_O = 0$ die unbekannten Reaktionen bestimmt.

- (3) Schnittlasten. Bei einem freigelegten, imaginären Schnitt durch einen Körper erhält man auf den zwei Teilen innere Schnittkräfte. Diese Schnittkräfte bestehen typischerweise aus drei Größen:
 - Normalkraft N (axial durch den Schnitt),
 - Querkraft V (senkrecht zum Schnitt),
 - Moment M (Biegemoment am Schnitt).

Für jeden Teil gilt die Gleichgewichtsbedingung

$$\sum F_x = 0, \quad \sum F_y = 0, \quad \sum M = 0.$$

Die Schnittkräfte müssen so gewählt werden, dass diese Gleichungen erfüllt sind.

- (4) Fachwerke. Fachwerke sind Konstruktionen aus starren Stäben, die nur axiale Kräfte tragen (Zug oder Druck). Belastungen wirken an Knotenpunkten, und die Stäbe übertragen die Kräfte linear axial.
 - Grundregel: Ein Fachwerk ist statisch bestimmt, wenn

$$m+r=2j$$

gilt, wobei

- -m = Anzahl der Stäbe,
- -r = Anzahl der Reaktionskräfte,
- -i = Anzahl der Knoten.

Ist diese Gleichung erfüllt, ist das Fachwerk statisch bestimmt; ist m+r>2j oder <2j, liegt statische Unbestimmtheit bzw. Unterbestimmtheit vor.

• Methoden zur Berechnung:

- Methode der Kräfte (Knotenmethode): An jedem Knoten gilt

$$\sum F_x = 0, \qquad \sum F_y = 0.$$

Alle unbekannten Stabkräfte werden schrittweise durch Gleichgewichte an den Knoten bestimmt.

– Methode der Schnitte (Schnittmethode): Wähle einen Schnitt, der nur wenige Unbekannte enthält, und benutze $\sum F_x = 0$, $\sum F_y = 0$ bzw. $\sum M = 0$ am Schnitt.

• Typische Hinweise:

- Nullkraftglieder: Falls zwei starr miteinander verbundene Knoten keine externa Last tragen, können verbundene Stäbe unter Umstände als Nullkräfte angenommen werden.
- Richtungswahl: Vorzeichen conventionen sollten konsistent bleiben (Zug positiv, Kompression negativ ist oft sinnvoll).

Hinweise zur Anwendung. - Alle Kräfte in Newton (N) bzw. Kilonewton (kN) angeben. - Signaturen konsequent beibehalten; 2D-Probleme verwenden x- und y-Richtungen. - Beim Rechnen regelmäßig Zwischenresultate prüfen (Einheiten, Richtungen).