Lernzettel

Kombinatorische Logik: Gatternetze, Wahrheitstabellen und Minimierung

Universität: Technische Universität Berlin

Kurs/Modul: Rechnerorganisation **Erstellungsdatum:** September 20, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Rechnerorganisation

Lernzettel: Kombinatorische Logik: Gatternetze, Wahrheitstabellen und Minimierung

(1) Grundbegriffe der Booleschen Logik.

Boolesche Werte sind 0 und 1. Die Grundoperatoren sind: $A \wedge B$ (UND), $A \vee B$ (ODER) und $\neg A$ (NOT).

Identitäten und Regeln.

Identität:
$$A \vee 0 = A$$
, $A \wedge 1 = A$

Null:
$$A \lor 1 = 1$$
, $A \land 0 = 0$

Komplement:
$$A \vee \neg A = 1$$
, $A \wedge \neg A = 0$

Doppelnegation:
$$\neg(\neg A) = A$$

De Morgan:
$$\neg (A \land B) = \neg A \lor \neg B$$
, $\neg (A \lor B) = \neg A \land \neg B$

(2) Gatternetze (kombinatorische Logik).

Ein Gatternetz besteht aus Gattern, die Eingänge verarbeiten und Outputs liefern. Es enthält keine Speicherelemente; der Ausgang hängt nur von den aktuellen Eingängen ab. Typische Bausteine sind:

• AND-Gatter: $A \wedge B$

• OR-Gatter: $A \vee B$

• NOT-Gatter: $\neg A$

Weitere Bausteine: NAND $(\neg(A \land B))$, NOR $(\neg(A \lor B))$, XOR $(A \oplus B)$ und XNOR.

(3) Wahrheitstabellen.

Beispiele für zwei Eingänge A, B:

A	B	$A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1
A	$\mid B \mid$	$A \lor B$
0	0	0
0	1	1
1	0	1
1	1	1
A	B	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

NAND- und NOR-Tabellen ergeben sich als Verneinung der obigen Tabellen:

$$A \uparrow B = \neg (A \land B), \qquad A \downarrow B = \neg (A \lor B).$$

(4) Minimierungstechniken.

Ziel ist die Vereinfachung der logischen Funktion durch weniger Gatter.

Wichtige Gesetze (Auszug):

$$\begin{split} A \vee 0 &= A, \quad A \wedge 1 = A, \\ A \vee 1 &= 1, \quad A \wedge 0 = 0, \\ A \vee \neg A &= 1, \quad A \wedge \neg A = 0, \\ A \vee (A \wedge B) &= A, \quad A \wedge (A \vee B) = A, \\ \neg (A \wedge B) &= \neg A \vee \neg B, \quad \neg (A \vee B) = \neg A \wedge \neg B, \\ A \wedge (B \vee C) &= (A \wedge B) \vee (A \wedge C). \end{split}$$

Eine häufige Methode ist die Karnaugh-Karten-Minimierung (K-Karte) für 2–3 Variablen. Beispiel (3 Variablen): Minimalform aus den Mintermen $f(A, B, C) = \sum m(0, 1, 2, 5, 6, 7)$. Eine mögliche minimale Summe der Produkte ist:

$$f(A, B, C) = \overline{A} \overline{B} + AB + AC.$$

(5) Beispiel-Gatternetz zur Minimierung.

Für $f(A, B, C) = \overline{A}\overline{B} + AB + AC$ ergibt sich z.B. ein Aufbau:

- NOT-Gatter: \bar{A}, \bar{B}
- AND-Gatter 1: $\bar{A} \wedge \bar{B}$ (t1)
- AND-Gatter 2: $A \wedge B$ (t2)
- AND-Gatter 3: $A \wedge C$ (t3)
- OR-Gatter: $t1 \lor t2 \lor t3$ (f)

Zur Umsetzung mit 2-Eingang-Gattern kann man das OR-Gatter in zwei Stufen realisieren (zwischen t2 und t3, dann mit t1 OR dem Zwischenergebnis).

(6) Übungsaufgaben.

- Aufgabe 1: Minimieren Sie die Funktion $f(A, B, C) = \Sigma m(0, 1, 2, 5, 6, 7)$ und geben Sie die minimale Summe der Produkte an.
- Aufgabe 2: Geben Sie ein Gatternetz-Beispiel für $f(A, B, C) = (A \wedge B) \vee \neg C$ und formulieren Sie die entsprechenden Booleschen Ausdrücke.
- Aufgabe 3: Zeigen Sie, wie man f mit NAND-Gattern ausschreiben könnte und skizzieren Sie alternativ eine NOR-basierte Realisierung.
- Aufgabe 4: Skizzieren Sie eine einfache 2-Eingang-Karte (Karnaugh) für die drei Variablen und bestimmen Sie die Minimierung.

Hinweis zu Zielvorgaben.

Schwierigkeitsgrad: Normal. Die Inhalte dienen der Orientierung innerhalb des Kurses "Rechnerorganisation"; Details bleiben je nach Lehrplan variabel. Die hier gezeigten Formulierungen dienen der Verdeutlichung von Gatternetzen, Wahrheitstabellen und Minimierung.