Lernzettel

Rechnerarithmetik: Zahlendarstellungen, Festund Gleitkomma, Mikroalgorithmen

Universität: Technische Universität Berlin

Kurs/Modul: Rechnerorganisation **Erstellungsdatum:** September 20, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Rechnerorganisation

Lernzettel: Rechnerarithmetik

Schwerpunkt: Zahlendarstellungen, Fest- und Gleitkomma, Mikroalgorithmen

(1) Zahlendarstellungen

Zahlendarstellungen in digitalen Systemen basieren auf einem Basis-System. Im Computer ist Basis 2. Es gibt unterschiedliche Kodierungen:

Unsigned (vorzeichenlose) Zahlen. Die Werte werden durch die Binärwerte direkt dargestellt.

$$z = \sum_{k=0}^{n-1} b_k 2^k, \quad b_k \in \{0, 1\}.$$

Vorzeichenbehaftete Zahlen. Am häufigsten: Zweierkomplement (Two's complement). Die Werte lassen sich schreiben als

$$z = -b_{n-1} 2^{n-1} + \sum_{k=0}^{n-2} b_k 2^k, \quad b_k \in \{0, 1\}.$$

Beispiel: 8-Bit Zweierkomplement

$$-18_{10} \leftrightarrow 1110 \ 1110_2 \ (8 \ \text{Bit}).$$

(2) Festkomma (Fixed-Point) und Gleitkomma (Floating-Point)

Festkomma. Ein Festkomma-Wert wird durch eine Ganzzahl X und eine Fraktionalstelle f festgelegt. Dann gilt

$$x = \frac{X}{2^f}.$$

Wahl des Formats: N Bits insgesamt, f Nachkommastellen. Beispiel: N=8, f=4 (Q4.4).

$$X = 60 \Rightarrow x = \frac{60}{16} = 3.75.$$

$$X = -16 \Rightarrow x = \frac{-16}{16} = -1.0.$$

Overflow- und Unterlaufprobleme treten auf, wenn x außerhalb des Darstellungsbereichs liegt.

Gleitkomma. Gleitkommazahlen verwenden Mantisse und Exponent. In der IEEE-754-Darstellung (Single) hat man

Sign
$$s \in \{0, 1\}$$
, Exponent $E \in \{0, \dots, 255\}$, Mantisse $M \in \{0, \dots, 2^{23} - 1\}$.

Der Wert ist

$$x = (-1)^s \cdot (1.M) \cdot 2^{E-127}$$
 für $0 < E < 255$.

Es gelten Sonderwerte: - E=0: Normalisierung aufgehoben, subnormale Zahlen, - E=255: Sonderwerte (Inf, NaN).

Beispiele.

- Eine einfache Zahl: x = 1.0 wird dargestellt durch s = 0, E = 127, M = 0 und folgt der Gleichung $x = (+1) \cdot (1.0) \cdot 2^0 = 1.0$.

Beispiel direkt sichtbar:

(3) Mikroalgorithmen der Rechnerarithmetik

Addition (Binär). Bei n-Bit-Werten a und b mit Übertrag $c_0 = 0$: $s_i = a_i \oplus b_i \oplus c_i$, $c_{i+1} = (a_i \wedge b_i) \vee (a_i \wedge c_i) \vee (b_i \wedge c_i)$, für $i = 0,1,\ldots,n-1$. Die Gesamtsumme ergibt sich aus den Bits $s_0 biss_{n-1}$; $deroptionaleEndbertragc_n ist der Carry - Out$.

Multiplikation (Shift-and-Add). Zur Multiplikation von a und b (n-Bit-Werte):

$$p \leftarrow 0$$
, für $i = 0$ bis $n - 1$: $\begin{cases} \text{ falls } b_i = 1, & p \leftarrow p + (a \ll i) \end{cases}$

Das Ergebnis hat im Allgemeinen eine größere Wortbreite; es muss ggf. gerundet oder abgeschnitten werden.

Division (Restoring). Lange Division in der Hardware basiert auf dem Prinzip - initial remainder $\mathbf{r}_0 = 0$, $quotientq_0 = 0$, -frivonn-1bis0: $remainderr := (r \ll 1)|a_i; subtractord; wennr \ge 0 dannq_i = 1$, $r := r; elseq_i = 0$, r := r + d.DamiterhltmanQuotientqundRestr.

Hinweis zu Mikroalgorithmen. Mikroalgorithmen definieren, wie man arithmetische Operationen auf Registertransferebene schrittweise realisiert. Sie hängen stark von Wortbreite, Pipeline-Strategien und Speicherorganisierung ab.

(4) Leistungsaspekte und Hinweise

Leistung verstehen. Rechenleistung hängt von Implementierung ab (Wortbreite, Pipeline, Cache). Beispielkennzahlen. SPEC-Benchmarks geben grobe Orientierung; der Amdahl's Law-Ansatz

$$S(p) = \frac{1}{(1-p) + \frac{p}{N}},$$

schätzt den Speedup, wobei p der serialer Anteil und N die Grad der Parallelisierung ist.

(5) Aufbau und Kontext

- Zahlendarstellungen bestimmen, wie Rechenoperationen interpretiert werden. - Festkomma vs Gleitkomma: Reichweite, Genauigkeit, Implementierungskosten. - In der Rechnerarithmetik spielt auch die Zuordnung zu Mikroarchitektur, Registerbänken, Pipeline und Cache eine zentrale Rolle. - Die Eins-zu-eins-Abbildung von Rechenaufgaben in Maschinensprache erfolgt oft durch passende Mikroalgorithmen und passende Wortbreiten.

Hinweis: Diese Lernzettel-Datei folgt dem Stil der Vorlage mit Header- und Footer-Beschriftungen. Die Werbebotschaft All We Can Learn sowie der Link bleiben unverändert im Header bzw. Footer erhalten.