Lernzettel

Vektoren, Vektorräume, lineare Abbildungen, Dimension und lineare Unabhängigkeit

Universität: Technische Universität Berlin

Kurs/Modul: Analysis I und Lineare Algebra für Ingenieurwissenschaften

Erstellungsdatum: September 6, 2025

Zielorientierte Lerninhalte, kostenlos! Entdecke zugeschnittene Materialien für deine Kurse:

https://study. All We Can Learn. com

Analysis I und Lineare Algebra für Ingenieurwissenschaften

Lernzettel: Vektoren, Vektorräume, lineare Abbildungen, Dimension und lineare Unabhängigkeit

- (1) Vektoren und Vektorräume. Ein Vektorraum V über dem Körper F (typisch $F = \mathbb{R}$) ist eine Menge mit
 - einer Addition $+: V \times V \to V$ und
 - einer Skalarmultiplikation $\cdot: F \times V \to V$,

welche die Axiome des Vektorraumdefinitionssatzes erfüllt (Assoziativität und Kommutativität der Addition, Existenz eines Nullvektors und additive Inversen, Kompatibilität der Skalarmultiplikation, Distributivität u. a.). Beispiele:

- \mathbb{R}^n mit der üblichen Addition und Skalarmultiplikation.
- Der Raum der Polynome F[x] über F.
- (2) **Teilräume.** Eine Teilmenge $W \subseteq V$ ist genau dann ein Untervektorraum, wenn
 - $0 \in W$,
 - für alle $u, v \in W$ gilt $u + v \in W$,
 - für alle $\alpha \in F$ und $u \in W$ gilt $\alpha u \in W$.

Bemerkung: Randfälle $W = \{0\}$ oder W = V sind Untervektoräume.

(3) Lineare Unabhängigkeit und Erzeugung. Eine endliche Menge $\{v_1, \ldots, v_k\} \subseteq V$ ist linear unabhängig, falls

$$c_1v_1 + \dots + c_kv_k = 0 \quad \Rightarrow \quad c_1 = \dots = c_k = 0.$$

Der Unterraum span $\{v_1, \ldots, v_k\}$ besteht aus allen Linearkombinationen $\sum_{i=1}^k \alpha_i v_i$ mit $\alpha_i \in F$. Eine Basis von V ist eine Teilmenge, die sowohl linear unabhängig ist als auch V spannt.

(4) Dimension. Die Dimension von V (falls endlich) ist die Anzahl der Elemente einer Basis von V:

$$\dim V = |B|$$
 für eine Basis B von V .

Für $V = \mathbb{R}^n$ gilt dim V = n und jede Standardbasis hat die Größe n.

(5) Lineare Abbildungen. Eine Abbildung $T:V\to W$ zwischen Vektorräumen heißt linear, wenn

$$T(u+v) = T(u) + T(v), \qquad T(\alpha u) = \alpha T(u)$$

für alle $u, v \in V$ und $\alpha \in F$ gilt. Bild und Kern definieren:

$$Im(T) = \{ T(v) : v \in V \} \subseteq W, \quad \ker(T) = \{ v \in V : T(v) = 0 \}.$$

(6) Matrixdarstellung und Basiswechsel. Wähle Basen $B = (b_1, \ldots, b_n)$ von V und $C = (c_1, \ldots, c_m)$ von W. Zuordnung der Koordinaten beobachtet man durch die Matrix $A \in F^{m \times n}$ mit

$$[T(v)]_C = A[v]_B \quad (\forall v \in V).$$

Rechenregeln mit Matrizen folgen direkt aus der Linearität.

(7) Rang, Nullität und der Satz von Rank-Nullity. Für $T: V \to W$ gilt

$$\dim \operatorname{Im}(T) = \operatorname{Rang}(T), \qquad \dim \ker(T) = \operatorname{Nullitt}(T).$$

Falls V endlich dimensioniert ist,

$$\dim V = \operatorname{Rang}(T) + \operatorname{Nullitt}(T).$$

- (8) Isomorphismen und Folgerungen. Eine bijektive lineare Abbildung $T: V \to W$ ist genau dann ein Isomorphismus und erzeugt eine Strukturgleichheit dim $V = \dim W$. Wenn dim V = n und $B = \{b_1, \ldots, b_n\}$ eine Basis von V ist, dann ist $T(b_i)$ eine lineare Abbildung, deren Koordinatenmatrix bezüglich B und der Zielbasis die Identität hat, falls T ein Isomorphismus ist.
- (9) Geometrische Interpretation (Kurz). Elemente eines Vektorraums verketten lineare Strukturen; Unabhängigkeit bedeutet, dass keine Vektor-Kombination durch Skalare genutzt werden kann, um einen anderen Vektor zu erhalten. Dimension gibt an, wie viele Freiheitsgrade nötig sind, um jedes Element durch Basisvektoren zu beschreiben.
- (10) Beispiele und Anwendungen. Betrachte $T: \mathbb{R}^3 \to \mathbb{R}^2$ definiert durch T(x,y,z) = (x+y,z). Bestimme $\ker(T)$ und $\operatorname{Im}(T)$ und damit Rang und Nullität von T. Zeige, dass die Menge $\{(1,0,0),(0,1,0),(1,1,1)\}\subseteq\mathbb{R}^3$ linear unabhängig ist und damit eine Basis von \mathbb{R}^3 bilden kann (nach Prüfung der Unabhängigkeit und Da es genau drei Vektoren in \mathbb{R}^3).